Schulz S, Jansen L
Institut für Medizinische Informatik, Statistik und Dokumentation, Medizinische Universität Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria. E-mail:
Yearb Med Inform. 2013;8:132-46.
Medical decision support and other intelligent applications in the life sciences depend on increasing amounts of digital information. Knowledge bases as well as formal ontologies are being used to organize biomedical knowledge and data. However, these two kinds of artefacts are not always clearly distinguished. Whereas the popular RDF(S) standard provides an intuitive triple-based representation, it is semantically weak. Description logics based ontology languages like OWL-DL carry a clear-cut semantics, but they are computationally expensive, and they are often misinterpreted to encode all kinds of statements, including those which are not ontological.
We distinguish four kinds of statements needed to comprehensively represent domain knowledge: universal statements, terminological statements, statements about particulars and contingent statements. We argue that the task of formal ontologies is solely to represent universal statements, while the non-ontological kinds of statements can nevertheless be connected with ontological representations. To illustrate these four types of representations, we use a running example from parasitology.
We finally formulate recommendations for semantically adequate ontologies that can efficiently be used as a stable framework for more context-dependent biomedical knowledge representation and reasoning applications like clinical decision support systems.
生命科学中的医学决策支持及其他智能应用依赖于越来越多的数字信息。知识库以及形式本体正被用于组织生物医学知识和数据。然而,这两种人工制品并不总是能被清楚地区分。虽然流行的RDF(S)标准提供了一种基于直观三元组的表示方式,但它在语义上较为薄弱。像OWL-DL这样基于描述逻辑的本体语言具有清晰的语义,但它们的计算成本很高,而且常常被误解为对各种陈述进行编码,包括那些并非本体论的陈述。
我们区分了全面表示领域知识所需的四种陈述:通用陈述、术语陈述、关于特定事物的陈述和偶然陈述。我们认为形式本体的任务仅仅是表示通用陈述,而非本体论类型的陈述仍然可以与本体表示相联系。为了说明这四种表示类型,我们使用了寄生虫学中的一个实例。
我们最终为语义上适当的本体制定了建议,这些本体可以有效地用作更依赖上下文的生物医学知识表示和推理应用(如临床决策支持系统)的稳定框架。