Suppr超能文献

电子健康记录为何对研究和临床护理极具挑战性?

Why Is the Electronic Health Record So Challenging for Research and Clinical Care?

机构信息

Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States.

Information Technology Entity Services and Corporate Information Services, University of Pennsylvania Health System, Philadelphia, Pennsylvania, United States.

出版信息

Methods Inf Med. 2021 May;60(1-02):32-48. doi: 10.1055/s-0041-1731784. Epub 2021 Jul 19.

Abstract

BACKGROUND

The electronic health record (EHR) has become increasingly ubiquitous. At the same time, health professionals have been turning to this resource for access to data that is needed for the delivery of health care and for clinical research. There is little doubt that the EHR has made both of these functions easier than earlier days when we relied on paper-based clinical records. Coupled with modern database and data warehouse systems, high-speed networks, and the ability to share clinical data with others are large number of challenges that arguably limit the optimal use of the EHR OBJECTIVES:  Our goal was to provide an exhaustive reference for those who use the EHR in clinical and research contexts, but also for health information systems professionals as they design, implement, and maintain EHR systems.

METHODS

This study includes a panel of 24 biomedical informatics researchers, information technology professionals, and clinicians, all of whom have extensive experience in design, implementation, and maintenance of EHR systems, or in using the EHR as clinicians or researchers. All members of the panel are affiliated with Penn Medicine at the University of Pennsylvania and have experience with a variety of different EHR platforms and systems and how they have evolved over time.

RESULTS

Each of the authors has shared their knowledge and experience in using the EHR in a suite of 20 short essays, each representing a specific challenge and classified according to a functional hierarchy of interlocking facets such as usability and usefulness, data quality, standards, governance, data integration, clinical care, and clinical research.

CONCLUSION

We provide here a set of perspectives on the challenges posed by the EHR to clinical and research users.

摘要

背景

电子健康记录 (EHR) 已经变得越来越普及。与此同时,医疗专业人员也开始利用这一资源获取医疗服务和临床研究所需的数据。毫无疑问,EHR 使得这两个功能比以前依赖纸质临床记录的日子更加容易。结合现代数据库和数据仓库系统、高速网络以及与他人共享临床数据的能力,带来了许多挑战,这些挑战限制了 EHR 的最佳使用。

目的

我们的目标是为在临床和研究环境中使用 EHR 的人提供详尽的参考,同时也为设计、实施和维护 EHR 系统的健康信息系统专业人员提供参考。

方法

本研究包括一个由 24 名生物医学信息学研究人员、信息技术专业人员和临床医生组成的小组,他们都在 EHR 系统的设计、实施和维护方面拥有丰富的经验,或者在作为临床医生或研究人员使用 EHR 方面拥有丰富的经验。小组的所有成员都隶属于宾夕法尼亚大学宾夕法尼亚医学院,并且都有使用各种不同的 EHR 平台和系统的经验,以及它们随时间的演变。

结果

每位作者都在 20 篇短文集中分享了他们在使用 EHR 方面的知识和经验,每篇短文都代表了一个具体的挑战,并根据互锁方面的功能层次结构进行分类,例如可用性和有用性、数据质量、标准、治理、数据集成、临床护理和临床研究。

结论

我们在这里提供了一套关于 EHR 给临床和研究用户带来的挑战的观点。

相似文献

1
Why Is the Electronic Health Record So Challenging for Research and Clinical Care?
Methods Inf Med. 2021 May;60(1-02):32-48. doi: 10.1055/s-0041-1731784. Epub 2021 Jul 19.
2
Bringing service design to the development of health information systems: The case of the Portuguese national electronic health record.
Int J Med Inform. 2019 Dec;132:103942. doi: 10.1016/j.ijmedinf.2019.08.002. Epub 2019 Aug 2.
4
Assessing the Status Quo of EHR Accessibility, Usability, and Knowledge Dissemination.
EGEMS (Wash DC). 2018 May 25;6(1):9. doi: 10.5334/egems.228.
6
Electronic Health Record Challenges, Workarounds, and Solutions Observed in Practices Integrating Behavioral Health and Primary Care.
J Am Board Fam Med. 2015 Sep-Oct;28 Suppl 1(Suppl 1):S63-72. doi: 10.3122/jabfm.2015.S1.150133.
7
EHR-BERT: A BERT-based model for effective anomaly detection in electronic health records.
J Biomed Inform. 2024 Feb;150:104605. doi: 10.1016/j.jbi.2024.104605. Epub 2024 Feb 6.
8
Physicians' and nurses' experiences on EHR usability: Comparison between the professional groups by employment sector and system brand.
Int J Med Inform. 2020 Feb;134:104018. doi: 10.1016/j.ijmedinf.2019.104018. Epub 2019 Oct 24.
9
Adult patient access to electronic health records.
Cochrane Database Syst Rev. 2021 Feb 26;2(2):CD012707. doi: 10.1002/14651858.CD012707.pub2.
10
How can we partner with electronic health record vendors on the complex journey to safer health care?
J Healthc Risk Manag. 2020 Oct;40(2):34-43. doi: 10.1002/jhrm.21434. Epub 2020 Jul 9.

引用本文的文献

1
What Is Fair? Defining Fairness in Machine Learning for Health.
Stat Med. 2025 Sep;44(20-22):e70234. doi: 10.1002/sim.70234.
2
Evaluating Maturity Models in Healthcare Information Systems: A Comprehensive Review.
Healthcare (Basel). 2025 Jul 29;13(15):1847. doi: 10.3390/healthcare13151847.
4
: A Question Answering Benchmark with Long Clinical Documents.
J Healthc Inform Res. 2025 Jun 14;9(3):280-296. doi: 10.1007/s41666-025-00204-w. eCollection 2025 Sep.
5
Bridging surgical oncology and personalized medicine: the role of artificial intelligence and machine learning in thoracic surgery.
Ann Med Surg (Lond). 2025 Apr 22;87(6):3566-3572. doi: 10.1097/MS9.0000000000003302. eCollection 2025 Jun.
7
EHRchitect: An open-source software tool for medical event sequences data extraction from Electronic Health Records.
J Clin Transl Sci. 2025 Mar 26;9(1):e79. doi: 10.1017/cts.2025.55. eCollection 2025.
8
How Data Analytics Can Be Leveraged to Enhance Graduate Clinical Skills Education.
J Grad Med Educ. 2025 May;17(2 Suppl):37-41. doi: 10.4300/JGME-D-24-00776.1. Epub 2025 May 15.

本文引用的文献

1
Privacy-Preserving Methods for Vertically Partitioned Incomplete Data.
AMIA Annu Symp Proc. 2021 Jan 25;2020:348-357. eCollection 2020.
2
Variability in the assessment of children's primary healthcare in 30 European countries.
Int J Qual Health Care. 2021 Feb 8;33(1). doi: 10.1093/intqhc/mzab007.
3
Comparison of 13 Commercially Available Cardiac Troponin Assays in a Multicenter North American Study.
J Appl Lab Med. 2017 Mar 1;1(5):544-561. doi: 10.1373/jalm.2016.022640.
5
Multiple imputation for analysis of incomplete data in distributed health data networks.
Nat Commun. 2020 Oct 29;11(1):5467. doi: 10.1038/s41467-020-19270-2.
7
International electronic health record-derived COVID-19 clinical course profiles: the 4CE consortium.
NPJ Digit Med. 2020 Aug 19;3:109. doi: 10.1038/s41746-020-00308-0. eCollection 2020.
8
The National COVID Cohort Collaborative (N3C): Rationale, design, infrastructure, and deployment.
J Am Med Inform Assoc. 2021 Mar 1;28(3):427-443. doi: 10.1093/jamia/ocaa196.
9
Learning from local to global: An efficient distributed algorithm for modeling time-to-event data.
J Am Med Inform Assoc. 2020 Jul 1;27(7):1028-1036. doi: 10.1093/jamia/ocaa044.
10
Data Quality Challenges in a Learning Health System.
Stud Health Technol Inform. 2020 Jun 16;270:143-147. doi: 10.3233/SHTI200139.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验