Domenighetti Andrea A, Chu Pao-Hsien, Wu Tongbin, Sheikh Farah, Gokhin David S, Guo Ling T, Cui Ziyou, Peter Angela K, Christodoulou Danos C, Parfenov Michael G, Gorham Joshua M, Li Daniel Y, Banerjee Indroneal, Lai Xianyin, Witzmann Frank A, Seidman Christine E, Seidman Jonathan G, Gomes Aldrin V, Shelton G Diane, Lieber Richard L, Chen Ju
Department of Medicine, Cardiology Division.
Hum Mol Genet. 2014 Jan 1;23(1):209-25. doi: 10.1093/hmg/ddt412. Epub 2013 Aug 23.
Recent human genetic studies have provided evidences that sporadic or inherited missense mutations in four-and-a-half LIM domain protein 1 (FHL1), resulting in alterations in FHL1 protein expression, are associated with rare congenital myopathies, including reducing body myopathy and Emery-Dreifuss muscular dystrophy. However, it remains to be clarified whether mutations in FHL1 cause skeletal muscle remodeling owing to gain- or loss of FHL1 function. In this study, we used FHL1-null mice lacking global FHL1 expression to evaluate loss-of-function effects on skeletal muscle homeostasis. Histological and functional analyses of soleus, tibialis anterior and sternohyoideus muscles demonstrated that FHL1-null mice develop an age-dependent myopathy associated with myofibrillar and intermyofibrillar (mitochondrial and sarcoplasmic reticulum) disorganization, impaired muscle oxidative capacity and increased autophagic activity. A longitudinal study established decreased survival rates in FHL1-null mice, associated with age-dependent impairment of muscle contractile function and a significantly lower exercise capacity. Analysis of primary myoblasts isolated from FHL1-null muscles demonstrated early muscle fiber differentiation and maturation defects, which could be rescued by re-expression of the FHL1A isoform, highlighting that FHL1A is necessary for proper muscle fiber differentiation and maturation in vitro. Overall, our data show that loss of FHL1 function leads to myopathy in vivo and suggest that loss of function of FHL1 may be one of the mechanisms underlying muscle dystrophy in patients with FHL1 mutations.
最近的人类遗传学研究提供了证据,表明四半LIM结构域蛋白1(FHL1)中的散发性或遗传性错义突变导致FHL1蛋白表达改变,与罕见的先天性肌病有关,包括减少性身体肌病和Emery-Dreifuss肌营养不良症。然而,FHL1突变是否由于FHL1功能的获得或丧失而导致骨骼肌重塑仍有待阐明。在本研究中,我们使用缺乏整体FHL1表达的FHL1基因敲除小鼠来评估功能丧失对骨骼肌稳态的影响。对比目鱼肌、胫前肌和胸骨舌骨肌的组织学和功能分析表明,FHL1基因敲除小鼠会发展出一种与年龄相关的肌病,伴有肌原纤维和肌原纤维间(线粒体和肌浆网)紊乱、肌肉氧化能力受损和自噬活性增加。一项纵向研究表明,FHL1基因敲除小鼠的存活率降低,这与年龄相关的肌肉收缩功能受损和运动能力显著降低有关。对从FHL1基因敲除肌肉中分离出的原代成肌细胞的分析表明,早期肌纤维分化和成熟存在缺陷,而FHL1A亚型的重新表达可以挽救这些缺陷,这突出表明FHL1A对于体外适当的肌纤维分化和成熟是必需的。总体而言,我们的数据表明FHL1功能丧失在体内会导致肌病,并表明FHL1功能丧失可能是FHL1突变患者肌肉营养不良的潜在机制之一。