Bondell Howard D, Stefanski Leonard A
Department of Statistics, North Carolina State University, Box 8203, Raleigh, NC 27695, U.S.A.
J Am Stat Assoc. 2013 Jan 1;108(502):644-655. doi: 10.1080/01621459.2013.779847.
Large- and finite-sample efficiency and resistance to outliers are the key goals of robust statistics. Although often not simultaneously attainable, we develop and study a linear regression estimator that comes close. Efficiency obtains from the estimator's close connection to generalized empirical likelihood, and its favorable robustness properties are obtained by constraining the associated sum of (weighted) squared residuals. We prove maximum attainable finite-sample replacement breakdown point, and full asymptotic efficiency for normal errors. Simulation evidence shows that compared to existing robust regression estimators, the new estimator has relatively high efficiency for small sample sizes, and comparable outlier resistance. The estimator is further illustrated and compared to existing methods via application to a real data set with purported outliers.
大样本和有限样本效率以及对异常值的抗性是稳健统计的关键目标。尽管这些目标通常无法同时实现,但我们开发并研究了一种与之接近的线性回归估计量。该估计量的效率源于其与广义经验似然的紧密联系,而其良好的稳健性则通过约束(加权)平方残差的相关和来实现。我们证明了其可达到的最大有限样本替换崩溃点,以及在正态误差情况下的完全渐近效率。模拟证据表明,与现有的稳健回归估计量相比,新估计量在小样本量时具有相对较高的效率,并且具有相当的抗异常值能力。通过将该估计量应用于一个声称存在异常值的真实数据集,进一步对其进行了说明,并与现有方法进行了比较。