Suppr超能文献

分子动力学模拟有助于深入了解与可溶性和膜结合的MHC-II复合物相关的表位。

Molecular dynamics simulations to provide insights into epitopes coupled to the soluble and membrane-bound MHC-II complexes.

作者信息

Bello Martiniano, Correa-Basurto Jose

机构信息

Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City, México.

出版信息

PLoS One. 2013 Aug 19;8(8):e72575. doi: 10.1371/journal.pone.0072575. eCollection 2013.

Abstract

Epitope recognition by major histocompatibility complex II (MHC-II) is essential for the activation of immunological responses to infectious diseases. Several studies have demonstrated that this molecular event takes place in the MHC-II peptide-binding groove constituted by the α and β light chains of the heterodimer. This MHC-II peptide-binding groove has several pockets (P1-P11) involved in peptide recognition and complex stabilization that have been probed through crystallographic experiments and in silico calculations. However, most of these theoretical calculations have been performed without taking into consideration the heavy chains, which could generate misleading information about conformational mobility both in water and in the membrane environment. Therefore, in absence of structural information about the difference in the conformational changes between the peptide-free and peptide-bound states (pMHC-II) when the system is soluble in an aqueous environment or non-covalently bound to a cell membrane, as the physiological environment for MHC-II is. In this study, we explored the mechanistic basis of these MHC-II components using molecular dynamics (MD) simulations in which MHC-II was previously co-crystallized with a small epitope (P7) or coupled by docking procedures to a large (P22) epitope. These MD simulations were performed at 310 K over 100 ns for the water-soluble (MHC-IIw, MHC-II-P(7w), and MHC-II-P(22w)) and 150 ns for the membrane-bound species (MHC-IIm, MHC-II-P(7m), and MHC-II-P(22m)). Our results reveal that despite the different epitope sizes and MD simulation environments, both peptides are stabilized primarily by residues lining P1, P4, and P6-7, and similar noncovalent intermolecular energies were observed for the soluble and membrane-bound complexes. However, there were remarkably differences in the conformational mobility and intramolecular energies upon complex formation, causing some differences with respect to how the two peptides are stabilized in the peptide-binding groove.

摘要

主要组织相容性复合体II(MHC-II)对感染性疾病免疫反应的激活至关重要,其表位识别必不可少。多项研究表明,这一分子事件发生在由异二聚体的α和β轻链构成的MHC-II肽结合槽中。这个MHC-II肽结合槽有几个参与肽识别和复合物稳定的口袋(P1 - P11),已通过晶体学实验和计算机模拟计算进行了探究。然而,这些理论计算大多未考虑重链,这可能会在水相和膜环境中产生有关构象流动性的误导性信息。因此,在缺乏关于系统可溶于水性环境或非共价结合到细胞膜(MHC-II的生理环境)时无肽状态和肽结合状态(pMHC-II)之间构象变化差异的结构信息的情况下,在本研究中,我们使用分子动力学(MD)模拟探索了这些MHC-II组件的机制基础,其中MHC-II先前已与一个小表位(P7)共结晶,或通过对接程序与一个大表位(P22)偶联。这些MD模拟在310 K下对水溶性物质(MHC-IIw、MHC-II-P(7w)和MHC-II-P(22w))进行了100 ns,对膜结合物质(MHC-IIm、MHC-II-P(7m)和MHC-II-P(22m))进行了150 ns。我们的结果表明,尽管表位大小和MD模拟环境不同,但两种肽主要都由位于P1、P4和P6 - 7的残基稳定,并且在可溶性和膜结合复合物中观察到了相似的非共价分子间能量。然而,复合物形成时构象流动性和分子内能量存在显著差异,导致两种肽在肽结合槽中的稳定方式存在一些差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6735/3747130/8cf725fcab46/pone.0072575.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验