Suppr超能文献

朝向基于结构的 II 类 MHC 表位针对多种同种异型的普遍预测。

Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes.

机构信息

Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America.

出版信息

PLoS One. 2010 Dec 20;5(12):e14383. doi: 10.1371/journal.pone.0014383.

Abstract

The binding of peptide fragments of antigens to class II MHC proteins is a crucial step in initiating a helper T cell immune response. The discovery of these peptide epitopes is important for understanding the normal immune response and its misregulation in autoimmunity and allergies and also for vaccine design. In spite of their biomedical importance, the high diversity of class II MHC proteins combined with the large number of possible peptide sequences make comprehensive experimental determination of epitopes for all MHC allotypes infeasible. Computational methods can address this need by predicting epitopes for a particular MHC allotype. We present a structure-based method for predicting class II epitopes that combines molecular mechanics docking of a fully flexible peptide into the MHC binding cleft followed by binding affinity prediction using a machine learning classifier trained on interaction energy components calculated from the docking solution. Although the primary advantage of structure-based prediction methods over the commonly employed sequence-based methods is their applicability to essentially any MHC allotype, this has not yet been convincingly demonstrated. In order to test the transferability of the prediction method to different MHC proteins, we trained the scoring method on binding data for DRB1*0101 and used it to make predictions for multiple MHC allotypes with distinct peptide binding specificities including representatives from the other human class II MHC loci, HLA-DP and HLA-DQ, as well as for two murine allotypes. The results showed that the prediction method was able to achieve significant discrimination between epitope and non-epitope peptides for all MHC allotypes examined, based on AUC values in the range 0.632-0.821. We also discuss how accounting for peptide binding in multiple registers to class II MHC largely explains the systematically worse performance of prediction methods for class II MHC compared with those for class I MHC based on quantitative prediction performance estimates for peptide binding to class II MHC in a fixed register.

摘要

抗原肽片段与 II 类 MHC 蛋白的结合是启动辅助性 T 细胞免疫反应的关键步骤。这些肽表位的发现对于理解正常免疫反应及其在自身免疫和过敏反应中的异常调节以及疫苗设计都非常重要。尽管它们具有重要的医学意义,但 II 类 MHC 蛋白的高度多样性与可能的肽序列数量之多使得全面实验确定所有 MHC 同种型的表位变得不可行。计算方法可以通过预测特定 MHC 同种型的表位来满足这一需求。我们提出了一种基于结构的方法来预测 II 类表位,该方法将完全柔性的肽分子力学对接到 MHC 结合槽中,然后使用基于从对接解决方案计算得出的相互作用能分量的机器学习分类器进行结合亲和力预测。尽管基于结构的预测方法相对于常用的基于序列的方法的主要优势在于它们适用于几乎任何 MHC 同种型,但这尚未得到令人信服的证明。为了测试预测方法对不同 MHC 蛋白的可转移性,我们在 DRB1*0101 的结合数据上训练了评分方法,并将其用于对具有不同肽结合特异性的多种 MHC 同种型进行预测,包括来自其他人类 II 类 MHC 基因座的代表,HLA-DP 和 HLA-DQ,以及两种鼠同种型。结果表明,该预测方法能够基于 AUC 值在 0.632-0.821 的范围内,对所有检查的 MHC 同种型的表位和非表位肽进行显著区分。我们还讨论了如何考虑到 II 类 MHC 中多个注册处的肽结合在很大程度上解释了与基于 II 类 MHC 中肽结合的定量预测性能估计相比,预测方法对 II 类 MHC 的性能较差,而不是对 I 类 MHC 的预测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2087/3004863/69f5f1bf3385/pone.0014383.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验