Farzadfard Fahim, Perli Samuel D, Lu Timothy K
Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
ACS Synth Biol. 2013 Oct 18;2(10):604-13. doi: 10.1021/sb400081r. Epub 2013 Sep 11.
Transcriptional regulation is central to the complex behavior of natural biological systems and synthetic gene circuits. Platforms for the scalable, tunable, and simple modulation of transcription would enable new abilities to study natural systems and implement artificial capabilities in living cells. Previous approaches to synthetic transcriptional regulation have relied on engineering DNA-binding proteins, which necessitate multistep processes for construction and optimization of function. Here, we show that the CRISPR/Cas system of Streptococcus pyogenes can be programmed to direct both activation and repression to natural and artificial eukaryotic promoters through the simple engineering of guide RNAs with base-pairing complementarity to target DNA sites. We demonstrate that the activity of CRISPR-based transcription factors (crisprTFs) can be tuned by directing multiple crisprTFs to different positions in natural promoters and by arraying multiple crisprTF-binding sites in the context of synthetic promoters in yeast and human cells. Furthermore, externally controllable regulatory modules can be engineered by layering gRNAs with small molecule-responsive proteins. Additionally, single nucleotide substitutions within promoters are sufficient to render them orthogonal with respect to the same gRNA-guided crisprTF. We envision that CRISPR-based eukaryotic gene regulation will enable the facile construction of scalable synthetic gene circuits and open up new approaches for mapping natural gene networks and their effects on complex cellular phenotypes.
转录调控对于自然生物系统和合成基因回路的复杂行为至关重要。能够对转录进行可扩展、可调节且简单调控的平台,将使我们具备研究自然系统以及在活细胞中实现人工功能的新能力。以往合成转录调控的方法依赖于对DNA结合蛋白进行工程改造,这需要多步过程来构建和优化功能。在此,我们表明,通过简单设计与靶DNA位点具有碱基配对互补性的引导RNA,化脓性链球菌的CRISPR/Cas系统可被编程用于对天然和人工真核启动子进行激活和抑制。我们证明,基于CRISPR的转录因子(crisprTFs)的活性可以通过将多个crisprTFs导向天然启动子中的不同位置,以及在酵母和人类细胞的合成启动子背景下排列多个crisprTF结合位点来进行调节。此外,通过将引导RNA与小分子响应蛋白分层,可以构建外部可控的调控模块。此外,启动子内的单核苷酸替换足以使其相对于相同gRNA引导的crisprTF具有正交性。我们设想,基于CRISPR的真核基因调控将使可扩展合成基因回路的轻松构建成为可能,并为绘制天然基因网络及其对复杂细胞表型的影响开辟新途径。