Suppr超能文献

将 CRISPR 重新用作 RNA 引导的平台,用于基因表达的序列特异性控制。

Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.

机构信息

UCSF Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA.

出版信息

Cell. 2013 Feb 28;152(5):1173-83. doi: 10.1016/j.cell.2013.02.022.

Abstract

Targeted gene regulation on a genome-wide scale is a powerful strategy for interrogating, perturbing, and engineering cellular systems. Here, we develop a method for controlling gene expression based on Cas9, an RNA-guided DNA endonuclease from a type II CRISPR system. We show that a catalytically dead Cas9 lacking endonuclease activity, when coexpressed with a guide RNA, generates a DNA recognition complex that can specifically interfere with transcriptional elongation, RNA polymerase binding, or transcription factor binding. This system, which we call CRISPR interference (CRISPRi), can efficiently repress expression of targeted genes in Escherichia coli, with no detectable off-target effects. CRISPRi can be used to repress multiple target genes simultaneously, and its effects are reversible. We also show evidence that the system can be adapted for gene repression in mammalian cells. This RNA-guided DNA recognition platform provides a simple approach for selectively perturbing gene expression on a genome-wide scale.

摘要

在全基因组范围内进行靶向基因调控是一种强大的策略,可以用于研究、干扰和工程细胞系统。在这里,我们开发了一种基于 Cas9 的基因表达控制方法,Cas9 是一种来自 II 型 CRISPR 系统的 RNA 指导的 DNA 内切酶。我们表明,一种缺乏内切酶活性的无活性 Cas9,与指导 RNA 共表达时,会产生一种 DNA 识别复合物,该复合物可以特异性地干扰转录延伸、RNA 聚合酶结合或转录因子结合。我们将这种系统称为 CRISPR 干扰(CRISPRi),它可以有效地抑制大肠杆菌中靶向基因的表达,并且没有可检测的脱靶效应。CRISPRi 可用于同时抑制多个靶基因,其效果是可逆的。我们还提供了证据表明,该系统可以适应哺乳动物细胞中的基因抑制。这种 RNA 指导的 DNA 识别平台为在全基因组范围内选择性干扰基因表达提供了一种简单的方法。

相似文献

1
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.
Cell. 2013 Feb 28;152(5):1173-83. doi: 10.1016/j.cell.2013.02.022.
2
Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
Appl Environ Microbiol. 2019 May 30;85(12). doi: 10.1128/AEM.00097-19. Print 2019 Jun 15.
3
CRISPR interference (CRISPRi) for sequence-specific control of gene expression.
Nat Protoc. 2013 Nov;8(11):2180-96. doi: 10.1038/nprot.2013.132. Epub 2013 Oct 17.
4
5
A Cas12a-based CRISPR interference system for multigene regulation in mycobacteria.
J Biol Chem. 2021 Aug;297(2):100990. doi: 10.1016/j.jbc.2021.100990. Epub 2021 Jul 21.
7
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes.
Cell. 2013 Jul 18;154(2):442-51. doi: 10.1016/j.cell.2013.06.044. Epub 2013 Jul 11.
8
Combining orthogonal CRISPR and CRISPRi systems for genome engineering and metabolic pathway modulation in Escherichia coli.
Biotechnol Bioeng. 2019 May;116(5):1066-1079. doi: 10.1002/bit.26915. Epub 2019 Feb 8.
9
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems.
Nucleic Acids Res. 2013 Apr;41(7):4336-43. doi: 10.1093/nar/gkt135. Epub 2013 Mar 4.
10
Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems.
Nucleic Acids Res. 2014 Feb;42(4):2577-90. doi: 10.1093/nar/gkt1074. Epub 2013 Nov 22.

引用本文的文献

1
Cutting-edge technologies in neural regeneration.
Cell Regen. 2025 Sep 5;14(1):38. doi: 10.1186/s13619-025-00260-y.
2
3D Genome Engineering: Current Advances and Therapeutic Opportunities in Human Diseases.
Research (Wash D C). 2025 Sep 1;8:0865. doi: 10.34133/research.0865. eCollection 2025.
3
AAV-dCas9 vector unsilences paternal Ube3a in neurons by impeding Ube3a-ATS transcription.
Commun Biol. 2025 Sep 2;8(1):1332. doi: 10.1038/s42003-025-08794-2.
4
CRISPR tools for T cells: targeting the genome, epigenome, and transcriptome.
Trends Cancer. 2025 Aug 28. doi: 10.1016/j.trecan.2025.08.001.
5
The Interface of Gene Editing with Regenerative Medicine.
Engineering (Beijing). 2025 Mar;46:73-100. doi: 10.1016/j.eng.2024.10.019. Epub 2024 Nov 30.
6
Cytotoxicity of activator expression in CRISPR-based transcriptional activation systems.
Nat Commun. 2025 Aug 29;16(1):8071. doi: 10.1038/s41467-025-63570-4.
7
Therapeutic pCRISPRi Delivery to Lung Squamous Cell Carcinoma by Combining Nanobubbles and Ultrasound.
Pharmaceutics. 2025 Aug 13;17(8):1053. doi: 10.3390/pharmaceutics17081053.
8
CRISPR/Cas-Mediated Optimization of Soybean Shoot Architecture for Enhanced Yield.
Int J Mol Sci. 2025 Aug 16;26(16):7925. doi: 10.3390/ijms26167925.
9
Structure-guided engineering of type I-F CASTs for targeted gene insertion in human cells.
Nat Commun. 2025 Aug 23;16(1):7891. doi: 10.1038/s41467-025-63164-0.
10
Dual-mode CRISPRa/i for genome-scale metabolic rewiring in Escherichia coli.
Nucleic Acids Res. 2025 Aug 11;53(15). doi: 10.1093/nar/gkaf818.

本文引用的文献

1
RNA-programmed genome editing in human cells.
Elife. 2013 Jan 29;2:e00471. doi: 10.7554/eLife.00471.
2
Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease.
Nat Biotechnol. 2013 Mar;31(3):230-2. doi: 10.1038/nbt.2507. Epub 2013 Jan 29.
3
RNA-guided editing of bacterial genomes using CRISPR-Cas systems.
Nat Biotechnol. 2013 Mar;31(3):233-9. doi: 10.1038/nbt.2508. Epub 2013 Jan 29.
4
Efficient genome editing in zebrafish using a CRISPR-Cas system.
Nat Biotechnol. 2013 Mar;31(3):227-9. doi: 10.1038/nbt.2501. Epub 2013 Jan 29.
5
RNA-guided human genome engineering via Cas9.
Science. 2013 Feb 15;339(6121):823-6. doi: 10.1126/science.1232033. Epub 2013 Jan 3.
6
Multiplex genome engineering using CRISPR/Cas systems.
Science. 2013 Feb 15;339(6121):819-23. doi: 10.1126/science.1231143. Epub 2013 Jan 3.
7
RNA processing enables predictable programming of gene expression.
Nat Biotechnol. 2012 Oct;30(10):1002-6. doi: 10.1038/nbt.2355. Epub 2012 Sep 16.
8
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):E2579-86. doi: 10.1073/pnas.1208507109. Epub 2012 Sep 4.
9
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.
Science. 2012 Aug 17;337(6096):816-21. doi: 10.1126/science.1225829. Epub 2012 Jun 28.
10
RNA-guided genetic silencing systems in bacteria and archaea.
Nature. 2012 Feb 15;482(7385):331-8. doi: 10.1038/nature10886.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验