Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003.
Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):15133-8. doi: 10.1073/pnas.1305883110. Epub 2013 Aug 26.
Phenotypic plasticity is presumed to be involved in adaptive change toward species diversification. We thus examined how candidate genes underlying natural variation across populations might also mediate plasticity within an individual. Our implementation of an integrative "plasticity space" approach revealed that the root plasticity of a single Arabidopsis accession exposed to distinct environments broadly recapitulates the natural variation "space." Genome-wide association mapping identified the known gene PHOSPHATE 1 (PHO1) and other genes such as Root System Architecture 1 (RSA1) associated with differences in root allometry, a highly plastic trait capturing the distribution of lateral roots along the primary axis. The response of mutants in the Columbia-0 background suggests their involvement in signaling key modulators of root development including auxin, abscisic acid, and nitrate. Moreover, genotype-by-environment interactions for the PHO1 and RSA1 genes in Columbia-0 phenocopy the root allometry of other natural variants. This finding supports a role for plasticity responses in phenotypic evolution in natural environments.
表型可塑性被认为参与了物种多样化的适应性变化。因此,我们研究了潜在的自然种群间变异的候选基因,是否也能在个体内部介导可塑性。我们实施了一种综合的“可塑性空间”方法,结果表明,暴露于不同环境中的单个拟南芥品系的根可塑性广泛再现了自然变异“空间”。全基因组关联图谱分析鉴定了已知基因 PHOSPHATE 1(PHO1)和其他基因,如根系统架构 1(RSA1),它们与根的分形差异有关,这是一个高度可塑性的特征,可捕捉侧根在主轴上的分布。哥伦比亚-0 背景下突变体的反应表明它们参与了信号转导关键调节剂的根发育,包括生长素、脱落酸和硝酸盐。此外,PHO1 和 RSA1 基因在哥伦比亚-0 中的基因型-环境互作模拟了其他自然变体的根分形。这一发现支持了可塑性反应在自然环境中表型进化中的作用。