Suppr超能文献

比较基因组学促进了细菌小 RNA 靶标预测。

Comparative genomics boosts target prediction for bacterial small RNAs.

机构信息

Genetics and Experimental Bioinformatics, Faculty of Biology, Centre for Biological Systems Analysis, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany.

出版信息

Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):E3487-96. doi: 10.1073/pnas.1303248110. Epub 2013 Aug 26.

Abstract

Small RNAs (sRNAs) constitute a large and heterogeneous class of bacterial gene expression regulators. Much like eukaryotic microRNAs, these sRNAs typically target multiple mRNAs through short seed pairing, thereby acting as global posttranscriptional regulators. In some bacteria, evidence for hundreds to possibly more than 1,000 different sRNAs has been obtained by transcriptome sequencing. However, the experimental identification of possible targets and, therefore, their confirmation as functional regulators of gene expression has remained laborious. Here, we present a strategy that integrates phylogenetic information to predict sRNA targets at the genomic scale and reconstructs regulatory networks upon functional enrichment and network analysis (CopraRNA, for Comparative Prediction Algorithm for sRNA Targets). Furthermore, CopraRNA precisely predicts the sRNA domains for target recognition and interaction. When applied to several model sRNAs, CopraRNA revealed additional targets and functions for the sRNAs CyaR, FnrS, RybB, RyhB, SgrS, and Spot42. Moreover, the mRNAs gdhA, lrp, marA, nagZ, ptsI, sdhA, and yobF-cspC were suggested as regulatory hubs targeted by up to seven different sRNAs. The verification of many previously undetected targets by CopraRNA, even for extensively investigated sRNAs, demonstrates its advantages and shows that CopraRNA-based analyses can compete with experimental target prediction approaches. A Web interface allows high-confidence target prediction and efficient classification of bacterial sRNAs.

摘要

小 RNA(sRNA)构成了一大类具有异质性的细菌基因表达调控因子。与真核生物 microRNA 非常相似,这些 sRNA 通常通过短种子配对靶向多个 mRNA,从而作为全局转录后调控因子发挥作用。在一些细菌中,通过转录组测序已经获得了数百到可能超过 1000 种不同 sRNA 的证据。然而,可能的靶标的实验鉴定,因此,它们作为基因表达的功能调节剂的确认仍然很费力。在这里,我们提出了一种策略,该策略将系统发育信息整合到预测基因组规模的 sRNA 靶标中,并通过功能富集和网络分析重建调控网络(CopraRNA,用于 sRNA 靶标比较预测算法)。此外,CopraRNA 精确预测了 sRNA 识别和相互作用的靶标结构域。当应用于几种模型 sRNA 时,CopraRNA 揭示了 CyaR、FnrS、RybB、RyhB、SgrS 和 Spot42 等 sRNA 的额外靶标和功能。此外,gdhA、lrp、marA、nagZ、ptsI、sdhA 和 yobF-cspC 的 mRNA 被建议作为多达七个不同 sRNA 靶向的调节枢纽。CopraRNA 验证了许多以前未检测到的靶标,即使对于广泛研究的 sRNA 也是如此,这证明了它的优势,并表明基于 CopraRNA 的分析可以与实验靶标预测方法竞争。一个 Web 界面允许进行高可信度的靶标预测和对细菌 sRNA 的有效分类。

相似文献

1
Comparative genomics boosts target prediction for bacterial small RNAs.比较基因组学促进了细菌小 RNA 靶标预测。
Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):E3487-96. doi: 10.1073/pnas.1303248110. Epub 2013 Aug 26.

引用本文的文献

4
What makes a small RNA work?是什么让小RNA发挥作用?
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf563.
8
Improving prediction of bacterial sRNA regulatory targets with expression data.利用表达数据改进细菌小RNA调控靶点的预测
NAR Genom Bioinform. 2025 May 8;7(2):lqaf055. doi: 10.1093/nargab/lqaf055. eCollection 2025 Jun.

本文引用的文献

3
EcoCyc: fusing model organism databases with systems biology.EcoCyc:将模式生物数据库与系统生物学融合。
Nucleic Acids Res. 2013 Jan;41(Database issue):D605-12. doi: 10.1093/nar/gks1027. Epub 2012 Nov 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验