Suppr超能文献

sRNA 靶标预测的快速机器学习方法:基于转录组范围的 sRNA 靶标预测。

sRNARFTarget: a fast machine-learning-based approach for transcriptome-wide sRNA target prediction.

机构信息

Department of Computer Science, Memorial University of Newfoundland, St. John's, Canada.

Department of Biology, Memorial University of Newfoundland, St. John's, Canada.

出版信息

RNA Biol. 2022;19(1):44-54. doi: 10.1080/15476286.2021.2012058. Epub 2021 Dec 31.

Abstract

Bacterial small regulatory RNAs (sRNAs) are key regulators of gene expression in many processes related to adaptive responses. A multitude of sRNAs have been identified in many bacterial species; however, their function has yet to be elucidated. A key step to understand sRNAs function is to identify the mRNAs these sRNAs bind to. There are several computational methods for sRNA target prediction, and the most accurate one is CopraRNA which is based on comparative-genomics. However, species-specific sRNAs are quite common and CopraRNA cannot be used for these sRNAs. The most commonly used transcriptome-wide sRNA target prediction method and second-most-accurate method is IntaRNA. However, IntaRNA can take hours to run on a bacterial transcriptome. Here we present sRNARFTarget, a machine-learning-based method for transcriptome-wide sRNA target prediction applicable to any sRNA. We comparatively assessed the performance of sRNARFTarget, CopraRNA and IntaRNA in three bacterial species. Our results show that sRNARFTarget outperforms IntaRNA in terms of accuracy, ranking of true interacting pairs, and running time. However, CopraRNA substantially outperforms the other two programsin terms of accuracy. Thus, we suggest using CopraRNA when homolog sequences of the sRNA are available, and sRNARFTarget for transcriptome-wide prediction or for species-specific sRNAs. sRNARFTarget is available at https://github.com/BioinformaticsLabAtMUN/sRNARFTarget.

摘要

细菌小调控 RNA(sRNA)是许多与适应性反应相关的基因表达过程中的关键调控因子。在许多细菌物种中已经鉴定出了大量的 sRNA;然而,它们的功能尚未阐明。了解 sRNA 功能的关键步骤是确定这些 sRNA 结合的 mRNA。有几种用于 sRNA 靶标预测的计算方法,最准确的方法是基于比较基因组学的 CopraRNA。然而,物种特异性的 sRNA 相当常见,CopraRNA 不能用于这些 sRNA。最常用的全转录组 sRNA 靶标预测方法和第二准确的方法是 IntaRNA。然而,IntaRNA 在细菌转录组上运行可能需要数小时。在这里,我们提出了 sRNARFTarget,这是一种基于机器学习的全转录组 sRNA 靶标预测方法,适用于任何 sRNA。我们在三种细菌中比较评估了 sRNARFTarget、CopraRNA 和 IntaRNA 的性能。我们的结果表明,sRNARFTarget 在准确性、真实相互作用对的排序和运行时间方面优于 IntaRNA。然而,CopraRNA 在准确性方面大大优于其他两个程序。因此,我们建议在有 sRNA 同源序列时使用 CopraRNA,而在全转录组预测或物种特异性 sRNA 时使用 sRNARFTarget。sRNARFTarget 可在 https://github.com/BioinformaticsLabAtMUN/sRNARFTarget 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4395/8794260/168425b908b7/KRNB_A_2012058_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验