Suppr超能文献

通过蚊虫幼虫源管理控制疟疾

Mosquito larval source management for controlling malaria.

作者信息

Tusting Lucy S, Thwing Julie, Sinclair David, Fillinger Ulrike, Gimnig John, Bonner Kimberly E, Bottomley Christian, Lindsay Steven W

机构信息

Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.

出版信息

Cochrane Database Syst Rev. 2013 Aug 29;2013(8):CD008923. doi: 10.1002/14651858.CD008923.pub2.

Abstract

BACKGROUND

Malaria is an important cause of illness and death in people living in many parts of the world, especially sub-Saharan Africa. Long-lasting insecticide treated bed nets (LLINs) and indoor residual spraying (IRS) reduce malaria transmission by targeting the adult mosquito vector and are key components of malaria control programmes. However, mosquito numbers may also be reduced by larval source management (LSM), which targets mosquito larvae as they mature in aquatic habitats. This is conducted by permanently or temporarily reducing the availability of larval habitats (habitat modification and habitat manipulation), or by adding substances to standing water that either kill or inhibit the development of larvae (larviciding).

OBJECTIVES

To evaluate the effectiveness of mosquito LSM for preventing malaria.

SEARCH METHODS

We searched the Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; CABS Abstracts; and LILACS up to 24 October 2012. We handsearched the Tropical Diseases Bulletin from 1900 to 2010, the archives of the World Health Organization (up to 11 February 2011), and the literature database of the Armed Forces Pest Management Board (up to 2 March 2011). We also contacted colleagues in the field for relevant articles.

SELECTION CRITERIA

We included cluster randomized controlled trials (cluster-RCTs), controlled before-and-after trials with at least one year of baseline data, and randomized cross-over trials that compared LSM with no LSM for malaria control. We excluded trials that evaluated biological control of anopheline mosquitoes with larvivorous fish.

DATA COLLECTION AND ANALYSIS

At least two authors assessed each trial for eligibility. We extracted data and at least two authors independently determined the risk of bias in the included studies. We resolved all disagreements through discussion with a third author. We analyzed the data using Review Manager 5 software.

MAIN RESULTS

We included 13 studies; four cluster-RCTs, eight controlled before-and-after trials, and one randomized cross-over trial. The included studies evaluated habitat modification (one study), habitat modification with larviciding (two studies), habitat manipulation (one study), habitat manipulation plus larviciding (two studies), or larviciding alone (seven studies) in a wide variety of habitats and countries. Malaria incidenceIn two cluster-RCTs undertaken in Sri Lanka, larviciding of abandoned mines, streams, irrigation ditches, and rice paddies reduced malaria incidence by around three-quarters compared to the control (RR 0.26, 95% CI 0.22 to 0.31, 20,124 participants, two trials, moderate quality evidence). In three controlled before-and-after trials in urban and rural India and rural Kenya, results were inconsistent (98,233 participants, three trials, very low quality evidence). In one trial in urban India, the removal of domestic water containers together with weekly larviciding of canals and stagnant pools reduced malaria incidence by three quarters. In one trial in rural India and one trial in rural Kenya, malaria incidence was higher at baseline in intervention areas than in controls. However dam construction in India, and larviciding of streams and swamps in Kenya, reduced malaria incidence to levels similar to the control areas. In one additional randomized cross-over trial in the flood plains of the Gambia River, where larval habitats were extensive and ill-defined, larviciding by ground teams did not result in a statistically significant reduction in malaria incidence (2039 participants, one trial). Parasite prevalenceIn one cluster-RCT from Sri Lanka, larviciding reduced parasite prevalence by almost 90% (RR 0.11, 95% CI 0.05 to 0.22, 2963 participants, one trial, moderate quality evidence). In five controlled before-and-after trials in Greece, India, the Philippines, and Tanzania, LSM resulted in an average reduction in parasite prevalence of around two-thirds (RR 0.32, 95% CI 0.19 to 0.55, 8041 participants, five trials, moderate quality evidence). The interventions in these five trials included dam construction to reduce larval habitats, flushing of streams, removal of domestic water containers, and larviciding. In the randomized cross-over trial in the flood plains of the Gambia River, larviciding by ground teams did not significantly reduce parasite prevalence (2039 participants, one trial).

AUTHORS' CONCLUSIONS: In Africa and Asia, LSM is another policy option, alongside LLINs and IRS, for reducing malaria morbidity in both urban and rural areas where a sufficient proportion of larval habitats can be targeted. Further research is needed to evaluate whether LSM is appropriate or feasible in parts of rural Africa where larval habitats are more extensive.

摘要

背景

疟疾是世界许多地区,尤其是撒哈拉以南非洲地区人们患病和死亡的重要原因。长效杀虫剂处理蚊帐(LLINs)和室内滞留喷洒(IRS)通过针对成年蚊媒来减少疟疾传播,是疟疾控制项目的关键组成部分。然而,蚊虫数量也可通过幼虫源管理(LSM)来减少,该方法针对在水生栖息地中发育成熟的蚊虫幼虫。这可通过永久或临时减少幼虫栖息地的可利用性(栖息地改造和栖息地操纵),或通过向静水中添加能杀死或抑制幼虫发育的物质(杀幼虫剂)来实现。

目的

评估蚊虫幼虫源管理预防疟疾的有效性。

检索方法

我们检索了Cochrane传染病组专业注册库;Cochrane对照试验中心注册库(CENTRAL);MEDLINE;EMBASE;CABS文摘库;以及截至2012年10月24日的LILACS。我们手工检索了1900年至2010年的《热带病通报》、世界卫生组织档案(截至2011年2月11日)以及武装部队害虫管理委员会的文献数据库(截至2011年3月2日)。我们还联系了该领域的同事以获取相关文章。

选择标准

我们纳入了整群随机对照试验(cluster-RCTs)、有至少一年基线数据的前后对照试验,以及比较幼虫源管理与无幼虫源管理进行疟疾控制的随机交叉试验。我们排除了评估用食蚊鱼对按蚊进行生物防治的试验。

数据收集与分析

至少两名作者评估每项试验的合格性。我们提取数据,且至少两名作者独立确定纳入研究中的偏倚风险。我们通过与第三位作者讨论解决所有分歧。我们使用Review Manager 5软件分析数据。

主要结果

我们纳入了13项研究;4项整群随机对照试验、8项前后对照试验和1项随机交叉试验。纳入的研究在各种栖息地和国家评估了栖息地改造(1项研究)、结合杀幼虫剂的栖息地改造(2项研究)、栖息地操纵(1项研究)、栖息地操纵加杀幼虫剂(2项研究)或单独使用杀幼虫剂(7项研究)。

疟疾发病率

在斯里兰卡进行的两项整群随机对照试验中,与对照组相比,对废弃矿坑、溪流、灌溉沟渠和稻田进行杀幼虫剂处理使疟疾发病率降低了约四分之三(风险比0.26,95%置信区间0.22至0.31,20124名参与者,两项试验,中等质量证据)。在印度城乡和肯尼亚农村进行的三项前后对照试验中,结果不一致(98233名参与者,三项试验,极低质量证据)。在印度城市的一项试验中,清除家庭储水容器并每周对运河和积水池进行杀幼虫剂处理使疟疾发病率降低了四分之三。在印度农村的一项试验和肯尼亚农村的一项试验中,干预地区基线时的疟疾发病率高于对照组。然而,印度的水坝建设以及肯尼亚溪流和沼泽的杀幼虫剂处理使疟疾发病率降至与对照地区相似的水平。在冈比亚河洪泛平原进行的另一项随机交叉试验中,由于幼虫栖息地广泛且不明确,地面团队进行的杀幼虫剂处理未使疟疾发病率有统计学意义的降低(2039名参与者,一项试验)。

寄生虫流行率

在斯里兰卡的一项整群随机对照试验中,杀幼虫剂处理使寄生虫流行率降低了近90%(风险比0.11,95%置信区间0.05至0.22,2963名参与者,一项试验,中等质量证据)。在希腊、印度、菲律宾和坦桑尼亚进行的五项前后对照试验中,幼虫源管理使寄生虫流行率平均降低了约三分之二(风险比0.32,95%置信区间0.19至0.55,8041名参与者,五项试验,中等质量证据)。这五项试验中的干预措施包括建造水坝以减少幼虫栖息地、冲洗溪流、清除家庭储水容器以及使用杀幼虫剂。在冈比亚河洪泛平原的随机交叉试验中,地面团队进行的杀幼虫剂处理未显著降低寄生虫流行率(2039名参与者,一项试验)。

作者结论

在非洲和亚洲,幼虫源管理是除长效杀虫剂处理蚊帐和室内滞留喷洒之外的另一项政策选择,可用于在有足够比例的幼虫栖息地可被靶向的城乡地区降低疟疾发病率。需要进一步研究以评估幼虫源管理在非洲农村部分地区是否合适或可行,这些地区幼虫栖息地更为广泛。

相似文献

1
Mosquito larval source management for controlling malaria.通过蚊虫幼虫源管理控制疟疾
Cochrane Database Syst Rev. 2013 Aug 29;2013(8):CD008923. doi: 10.1002/14651858.CD008923.pub2.
3
Larvivorous fish for preventing malaria transmission.用于预防疟疾传播的食蚊鱼
Cochrane Database Syst Rev. 2017 Dec 11;12(12):CD008090. doi: 10.1002/14651858.CD008090.pub3.
4
Larvivorous fish for preventing malaria transmission.用于预防疟疾传播的食蚊鱼
Cochrane Database Syst Rev. 2013 Dec 10(12):CD008090. doi: 10.1002/14651858.CD008090.pub2.
6
Topical repellents for malaria prevention.预防疟疾的局部用驱避剂。
Cochrane Database Syst Rev. 2023 Aug 21;8(8):CD015422. doi: 10.1002/14651858.CD015422.pub2.
7
Indoor residual spraying for preventing malaria.室内滞留喷洒预防疟疾。
Cochrane Database Syst Rev. 2010 Apr 14;2010(4):CD006657. doi: 10.1002/14651858.CD006657.pub2.
8
Mass drug administration for malaria.疟疾群体服药
Cochrane Database Syst Rev. 2013 Dec 9;2013(12):CD008846. doi: 10.1002/14651858.CD008846.pub2.
9
Mosquito repellents for malaria prevention.用于预防疟疾的驱蚊剂。
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011595. doi: 10.1002/14651858.CD011595.pub2.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验