Suppr超能文献

Reelin 和 Notch 通路控制着放射状胶质细胞终足在限制脊髓运动神经元胞体中的结构作用。

The structural role of radial glial endfeet in confining spinal motor neuron somata is controlled by the Reelin and Notch pathways.

机构信息

School of Life Sciences, Bioimaging Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea.

出版信息

Exp Neurol. 2013 Nov;249:83-94. doi: 10.1016/j.expneurol.2013.08.010. Epub 2013 Aug 27.

Abstract

Neuronal migration is a fundamental biological process that enables the precise positioning of neurons to form functional circuits. Cortical neurons migrate along glial scaffolds formed by radial glia guided by Reelin ligand. However, it is unclear whether the Reelin-directed behavior of radial glia is also critical for positioning the spinal neurons. Here we demonstrate a novel role of radial glia that confines motor neurons within the neural tube and is promoted by Reelin and Notch signaling. Spinal radial glia express the Dab1 adaptor for Reelin signaling and are surrounded by Reelin. In reeler mice, in which Reelin is absent, ectopic motor neurons are found outside the neural tube, although they appear to maintain their identity. Boundary cap (BC) cells, Schwann cell precursors and the basal lamina at motor exit points are intact, whereas the glia limitans of radial glia are disorganized and detached from the basement membrane. The sparse and irregular radial scaffold is wide enough to allow motor somata to pass. Forced activation of Notch signaling rescued the structural defects in radial glia in reeler mice and the appearance of extraspinal neurons. In the absence of Reelin, Notch intracellular domain (NICD) protein level was reduced. In addition, disrupting the radial glia scaffold by destroying its polarity induced ectopic motor neurons in chick embryos. These findings suggest that activation of the Notch pathways by Reelin is required to establish the radial glial scaffold, a structure that actively constrains motor neuron somata and specifies the CNS-PNS boundary.

摘要

神经元迁移是一种基本的生物学过程,它使神经元能够精确地定位,形成功能性回路。皮层神经元沿着由 Reelin 配体引导的放射状胶质形成的胶质支架迁移。然而,目前尚不清楚 Reelin 引导的放射状胶质的行为是否对定位脊髓神经元也很重要。在这里,我们证明了放射状胶质的一个新作用,即限制运动神经元在神经管内,并由 Reelin 和 Notch 信号促进。脊髓放射状胶质表达 Dab1 衔接蛋白用于 Reelin 信号,并且被 Reelin 包围。在 reeler 小鼠中,由于 Reelin 缺失,异位运动神经元位于神经管外,尽管它们似乎保持其身份。边界帽 (BC) 细胞、许旺细胞前体和运动神经元出口处的基底膜是完整的,而放射状胶质的胶质界膜是紊乱的,与基底膜分离。稀疏且不规则的放射状支架足够宽,可以让运动神经元胞体通过。在 reeler 小鼠中,强制激活 Notch 信号可以挽救放射状胶质的结构缺陷和脊髓外神经元的出现。在 Reelin 缺失的情况下,Notch 细胞内结构域 (NICD) 蛋白水平降低。此外,通过破坏其极性破坏放射状胶质支架会在鸡胚中诱导异位运动神经元。这些发现表明,Reelin 激活 Notch 途径对于建立放射状胶质支架是必需的,该支架结构积极限制运动神经元胞体并指定 CNS-PNS 边界。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验