Xu Dong, Li Hua, Zhang Yang
1 Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute , San Diego, California.
J Comput Biol. 2013 Oct;20(10):805-16. doi: 10.1089/cmb.2013.0071. Epub 2013 Aug 31.
Protein structure and function are largely specified by the distribution of different atoms and residues relative to the core and surface of the molecule. Relative depths of atoms therefore are key attributions that have been widely used in protein structure modeling and function annotation. However, accurate calculation of depth is time consuming. Here, we developed an algorithm which uses Euclidean distance transform (EDT) to convert the target protein structure into a 3D gray-scale image, where depths of atoms in the protein can be conveniently and precisely derived from the minimum distance of the pixels to the surface of the protein. We tested the proposed EDT-based method on a set of 261 non-redundant protein structures, which shows that the method is 2.6 times faster than the widely used method proposed by Chakravarty and Varadarajan. Depth values by EDT method are highly accurate with a Pearson's correlation coefficient ≈1 compared to the calculations from exhaustive search. To explore the usefulness of the method in protein structure prediction, we add the calculated residue depth to the scoring function of the state of the art, profile-profile alignment based fold-recognition program, which shows an additional 3% improvement in the TM-score of the alignments. The data demonstrate that the EDT-based depth calculation program can be used as an efficient tool to assist protein structure analysis and structure-based function annotation.
蛋白质的结构和功能很大程度上由不同原子和残基相对于分子核心和表面的分布所决定。因此,原子的相对深度是在蛋白质结构建模和功能注释中广泛使用的关键属性。然而,精确计算深度非常耗时。在此,我们开发了一种算法,该算法使用欧几里得距离变换(EDT)将目标蛋白质结构转换为三维灰度图像,其中蛋白质中原子的深度可以从像素到蛋白质表面的最小距离方便且精确地得出。我们在一组261个非冗余蛋白质结构上测试了所提出的基于EDT的方法,结果表明该方法比Chakravarty和Varadarajan提出的广泛使用的方法快2.6倍。与穷举搜索计算相比,EDT方法得出的深度值具有高度准确性,皮尔逊相关系数约为1。为了探索该方法在蛋白质结构预测中的有用性,我们将计算出的残基深度添加到基于轮廓-轮廓比对的最先进折叠识别程序的评分函数中,结果表明比对的TM分数提高了3%。数据表明,基于EDT的深度计算程序可作为一种有效的工具来辅助蛋白质结构分析和基于结构的功能注释。