Suppr超能文献

靶向蛋白降解的蛋白质-蛋白质相互作用预测。

Protein-Protein Interaction Prediction for Targeted Protein Degradation.

机构信息

Celeris Therapeutics GmbH, Salzamtsgasse 7, 8010 Graz, Austria.

出版信息

Int J Mol Sci. 2022 Jun 24;23(13):7033. doi: 10.3390/ijms23137033.

Abstract

Protein-protein interactions (PPIs) play a fundamental role in various biological functions; thus, detecting PPI sites is essential for understanding diseases and developing new drugs. PPI prediction is of particular relevance for the development of drugs employing targeted protein degradation, as their efficacy relies on the formation of a stable ternary complex involving two proteins. However, experimental methods to detect PPI sites are both costly and time-intensive. In recent years, machine learning-based methods have been developed as screening tools. While they are computationally more efficient than traditional docking methods and thus allow rapid execution, these tools have so far primarily been based on sequence information, and they are therefore limited in their ability to address spatial requirements. In addition, they have to date not been applied to targeted protein degradation. Here, we present a new deep learning architecture based on the concept of graph representation learning that can predict interaction sites and interactions of proteins based on their surface representations. We demonstrate that our model reaches state-of-the-art performance using AUROC scores on the established MaSIF dataset. We furthermore introduce a new dataset with more diverse protein interactions and show that our model generalizes well to this new data. These generalization capabilities allow our model to predict the PPIs relevant for targeted protein degradation, which we show by demonstrating the high accuracy of our model for PPI prediction on the available ternary complex data. Our results suggest that PPI prediction models can be a valuable tool for screening protein pairs while developing new drugs for targeted protein degradation.

摘要

蛋白质-蛋白质相互作用 (PPIs) 在各种生物功能中起着基础性作用;因此,检测 PPI 位点对于理解疾病和开发新药至关重要。PPI 预测对于开发采用靶向蛋白降解的药物尤其重要,因为它们的疗效依赖于涉及两种蛋白质的稳定三元复合物的形成。然而,检测 PPI 位点的实验方法既昂贵又费时。近年来,基于机器学习的方法已被开发为筛选工具。虽然它们在计算上比传统的对接方法更有效率,因此允许快速执行,但这些工具迄今为止主要基于序列信息,因此在解决空间要求方面的能力有限。此外,它们迄今为止尚未应用于靶向蛋白降解。在这里,我们提出了一种新的基于图表示学习概念的深度学习架构,该架构可以根据蛋白质的表面表示来预测相互作用位点和相互作用。我们证明,我们的模型在 MaSIF 数据集上使用 AUROC 分数达到了最先进的性能。我们还引入了一个具有更多样化蛋白质相互作用的新数据集,并表明我们的模型很好地泛化到这个新数据。这些泛化能力使我们的模型能够预测与靶向蛋白降解相关的 PPI,我们通过展示我们的模型在可用三元复合物数据上进行 PPI 预测的高精度来证明这一点。我们的结果表明,PPI 预测模型可以成为筛选蛋白质对的有价值的工具,同时为靶向蛋白降解开发新药。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca5/9266413/0dc6474f6797/ijms-23-07033-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验