From the Department of Biochemistry & Molecular Biology, Center for Membrane Biology and.
J Biol Chem. 2013 Oct 11;288(41):29911-22. doi: 10.1074/jbc.M113.505495. Epub 2013 Aug 30.
Rhodopsin photosensors of phototactic algae act as light-gated cation channels when expressed in animal cells. These proteins (channelrhodopsins) are extensively used for millisecond scale photocontrol of cellular functions (optogenetics). We report characterization of PsChR, one of the phototaxis receptors in the alga Platymonas (Tetraselmis) subcordiformis. PsChR exhibited ∼3-fold higher unitary conductance and greater relative permeability for Na(+) ions, as compared with the most frequently used channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Photocurrents generated by PsChR in HEK293 cells showed lesser inactivation and faster peak recovery than those by CrChR2. Their maximal spectral sensitivity was at 445 nm, making PsChR the most blue-shifted channelrhodopsin so far identified. The λmax of detergent-purified PsChR was 437 nm at neutral pH and exhibited red shifts (pKa values at 6.6 and 3.8) upon acidification. The purified pigment undergoes a photocycle with a prominent red-shifted intermediate whose formation and decay kinetics match the kinetics of channel opening and closing. The rise and decay of an M-like intermediate prior to formation of this putative conductive state were faster than in CrChR2. PsChR mediated sufficient light-induced membrane depolarization in cultured hippocampal neurons to trigger reliable repetitive spiking at the upper threshold frequency of the neurons. At low frequencies spiking probability decreases less with PsChR than with CrChR2 because of the faster recovery of the former. Its blue-shifted absorption enables optogenetics at wavelengths even below 400 nm. A combination of characteristics makes PsChR important for further research on structure-function relationships in ChRs and potentially useful for optogenetics, especially for combinatorial applications when short wavelength excitation is required.
光趋性藻类的视蛋白光感受器在动物细胞中表达时充当光门控阳离子通道。这些蛋白质(通道视蛋白)被广泛用于毫秒级别的细胞功能光控(光遗传学)。我们报告了 Platymonas (Tetraselmis) subcordiformis 藻类中的一种光趋性受体 PsChR 的特性。与最常使用的来自 Chlamydomonas reinhardtii 的通道视蛋白-2(CrChR2)相比,PsChR 的单位电导高出约 3 倍,对 Na(+)离子的相对通透性也更大。与 CrChR2 相比,PsChR 在 HEK293 细胞中产生的光电流的失活较少,峰恢复更快。它们的最大光谱灵敏度为 445nm,使 PsChR 成为迄今为止鉴定出的最蓝移的通道视蛋白。在中性 pH 下,去污剂纯化的 PsChR 的 λmax 为 437nm,并在酸化时表现出红移(pKa 值分别为 6.6 和 3.8)。纯化的色素经历一个具有明显红移中间产物的光循环,其形成和衰减动力学与通道打开和关闭的动力学相匹配。在形成这种假定的导电状态之前,M 样中间产物的形成和衰减比在 CrChR2 中更快。PsChR 在培养的海马神经元中介导足够的光诱导膜去极化,以触发神经元的可靠重复尖峰。在低频下,由于前者的恢复更快,PsChR 比 CrChR2 的尖峰概率下降更少。其蓝移吸收使得在甚至低于 400nm 的波长下进行光遗传学成为可能。一系列特性使 PsChR 成为进一步研究 ChRs 的结构-功能关系的重要工具,并且对于光遗传学可能有用,尤其是在需要短波长激发的组合应用中。