Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilian University Munich, Grosshadernerstrasse 2, Planegg-Martinsried, 82152, Munich, Germany.
Chromosome Res. 2013 Aug;21(5):535-54. doi: 10.1007/s10577-013-9375-7. Epub 2013 Aug 31.
To improve light propagation through the retina, the rod nuclei of nocturnal mammals are uniquely changed compared to the nuclei of other cells. In particular, the main classes of chromatin are segregated in them and form regular concentric shells in order; inverted in comparison to conventional nuclei. A broad study of the epigenetic landscape of the inverted and conventional mouse retinal nuclei indicated several differences between them and several features of general interest for the organization of the mammalian nuclei. In difference to nuclei with conventional architecture, the packing density of pericentromeric satellites and LINE-rich chromatin is similar in inverted rod nuclei; euchromatin has a lower packing density in both cases. A high global chromatin condensation in rod nuclei minimizes the structural difference between active and inactive X chromosome homologues. DNA methylation is observed primarily in the chromocenter, Dnmt1 is primarily associated with the euchromatic shell. Heterochromatin proteins HP1-alpha and HP1-beta localize in heterochromatic shells, whereas HP1-gamma is associated with euchromatin. For most of the 25 studied histone modifications, we observed predominant colocalization with a certain main chromatin class. Both inversions in rod nuclei and maintenance of peripheral heterochromatin in conventional nuclei are not affected by a loss or depletion of the major silencing core histone modifications in respective knock-out mice, but for different reasons. Maintenance of peripheral heterochromatin appears to be ensured by redundancy both at the level of enzymes setting the epigenetic code (writers) and the code itself, whereas inversion in rods rely on the absence of the peripheral heterochromatin tethers (absence of code readers).
为了提高光在视网膜中的传播,与其他细胞的细胞核相比,夜间哺乳动物的杆状核具有独特的变化。特别是,它们的主要染色质类别被分离,并形成规则的同心壳;与传统核相比是倒置的。对倒置和常规小鼠视网膜核的表观遗传景观进行了广泛研究,表明它们之间存在几个差异,以及几个与哺乳动物核组织有关的普遍感兴趣的特征。与具有传统结构的核不同,着丝粒卫星和富含 LINE 的染色质的周边密度在倒置的杆状核中相似;在这两种情况下,常染色质的包装密度都较低。杆状核中高的全局染色质浓缩程度最小化了活性和非活性 X 染色体同源物之间的结构差异。DNA 甲基化主要发生在染色质中心,Dnmt1 主要与常染色质壳相关。异染色质蛋白 HP1-α和 HP1-β定位于异染色质壳,而 HP1-γ与常染色质相关。对于研究的 25 种组蛋白修饰中的大多数,我们观察到它们与特定的主要染色质类别主要共定位。杆状核的反转和常规核中周边异染色质的维持不受相应敲除小鼠中主要沉默核心组蛋白修饰缺失或耗尽的影响,但原因不同。维持周边异染色质似乎通过在设置表观遗传密码(书写器)和密码本身的酶水平上的冗余来确保,而杆状核的反转依赖于周边异染色质的缺失(缺少代码读取器)。