Suppr超能文献

软骨细胞外基质大分子的相互作用

Interactions of Cartilage Extracellular Matrix Macromolecules.

作者信息

Horkay Ferenc

机构信息

Section on Tissue Biophysics and Biomimetics, Program in Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 13 South Drive, Bethesda, MD 20892, USA.

出版信息

J Polym Sci B Polym Phys. 2012 Dec 15;50(24):1699-1705. doi: 10.1002/polb.23191.

Abstract

Articular cartilage is a low-friction, load-bearing tissue located at joint surfaces. The extracellular matrix (ECM) of cartilage consists of a fibrous collagen network, which is pre-stressed by the osmotic swelling pressure exerted by negatively charged proteoglycan aggregates embedded in the collagen network. The major proteoglycan is the bottlebrush shaped aggrecan, which forms complexes with linear hyaluronic acid chains. We quantify microscopic and macroscopic changes resulting from self-assembly between aggrecan and hyaluronic acid using a complementary set of physical measurements to determine structure and interactions by combining scattering techniques, including small-angle X-ray scattering, small-angle neutron scattering, and dynamic light scattering with macroscopic osmotic pressure measurements. It is demonstrated that the osmotic pressure that defines the load bearing ability of cartilage is primarily governed by the main macromolecular components (aggrecan and collagen) of the ECM. Knowledge of the interactions between the macromolecular components of cartilage ECM is essential to understand biological function and to develop successful tissue engineering strategies for cartilage repair.

摘要

关节软骨是位于关节表面的一种低摩擦、承重组织。软骨的细胞外基质(ECM)由纤维状胶原网络组成,该网络通过嵌入胶原网络中的带负电荷的蛋白聚糖聚集体施加的渗透膨胀压力而受到预应力。主要的蛋白聚糖是刷状的聚集蛋白聚糖,它与线性透明质酸链形成复合物。我们使用一组互补的物理测量方法来量化聚集蛋白聚糖和透明质酸之间自组装产生的微观和宏观变化,通过结合散射技术(包括小角X射线散射、小角中子散射和动态光散射)与宏观渗透压测量来确定结构和相互作用。结果表明,决定软骨承重能力的渗透压主要由ECM的主要大分子成分(聚集蛋白聚糖和胶原)控制。了解软骨ECM大分子成分之间的相互作用对于理解生物学功能和开发成功的软骨修复组织工程策略至关重要。

相似文献

1
Interactions of Cartilage Extracellular Matrix Macromolecules.
J Polym Sci B Polym Phys. 2012 Dec 15;50(24):1699-1705. doi: 10.1002/polb.23191.
2
Cartilage extracellular matrix polymers: hierarchical structure, osmotic properties, and function.
Soft Matter. 2024 Jul 31;20(30):6033-6043. doi: 10.1039/d4sm00617h.
3
Structure and Properties of Cartilage Proteoglycans.
Macromol Symp. 2017 Apr;372(1):43-50. doi: 10.1002/masy.201700014. Epub 2017 Apr 19.
4
Aggrecan, an unusual polyelectrolyte: review of solution behavior and physiological implications.
Acta Biomater. 2012 Jan;8(1):3-12. doi: 10.1016/j.actbio.2011.08.011. Epub 2011 Aug 17.
5
Gel-like behavior in aggrecan assemblies.
J Chem Phys. 2008 Apr 7;128(13):135103. doi: 10.1063/1.2884350.
6
Molecular adhesion between cartilage extracellular matrix macromolecules.
Biomacromolecules. 2014 Mar 10;15(3):772-80. doi: 10.1021/bm401611b. Epub 2014 Feb 14.
7
Cartilage proteoglycans: structure and potential functions.
Microsc Res Tech. 1994 Aug 1;28(5):385-97. doi: 10.1002/jemt.1070280505.
8
Computational model for the analysis of cartilage and cartilage tissue constructs.
J Tissue Eng Regen Med. 2016 Apr;10(4):334-47. doi: 10.1002/term.1751. Epub 2013 Jun 20.
9
Probing Interactions between Aggrecan and Mica Surface by the Atomic Force Microscopy.
J Polym Sci B Polym Phys. 2010 Dec 15;48(24):2575-2581. doi: 10.1002/polb.22132.

引用本文的文献

2
Unusual Suspects: Bone and Cartilage ECM Proteins as Carcinoma Facilitators.
Cancers (Basel). 2023 Jan 27;15(3):791. doi: 10.3390/cancers15030791.
5
Tweedle proteins form extracellular two-dimensional structures defining body and cell shape in .
Open Biol. 2020 Dec;10(12):200214. doi: 10.1098/rsob.200214. Epub 2020 Dec 9.
6
Ontogeny informs regeneration: explant models to investigate the role of the extracellular matrix in cartilage tissue assembly and development.
Connect Tissue Res. 2020 May-Jul;61(3-4):278-291. doi: 10.1080/03008207.2019.1698556. Epub 2020 Mar 18.
8
Dwarfism in homozygous Agc1 mice is associated with decreased expression of aggrecan.
Genesis. 2017 Oct;55(10). doi: 10.1002/dvg.23070. Epub 2017 Sep 27.
9
Reconstruction of Hyaline Cartilage Deep Layer Properties in 3-Dimensional Cultures of Human Articular Chondrocytes.
Orthop J Sports Med. 2014 Jun 27;2(6):2325967114539122. doi: 10.1177/2325967114539122. eCollection 2014 Jun.
10
Protocatechuic acid benefits proliferation and phenotypic maintenance of rabbit articular chondrocytes: An study.
Exp Ther Med. 2015 May;9(5):1865-1870. doi: 10.3892/etm.2015.2326. Epub 2015 Mar 2.

本文引用的文献

1
Ions in hyaluronic acid solutions.
J Chem Phys. 2009 Nov 14;131(18):184902. doi: 10.1063/1.3262308.
2
Biochemical markers of the mechanical quality of engineered hyaline cartilage.
J Mater Sci Mater Med. 2007 Feb;18(2):273-81. doi: 10.1007/s10856-006-0689-2.
3
Measurement of the osmotic properties of thin polymer films and biological tissue samples.
Biomacromolecules. 2005 Mar-Apr;6(2):988-93. doi: 10.1021/bm049332c.
4
A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs.
J Orthop Res. 2005 Jan;23(1):134-41. doi: 10.1016/j.orthres.2004.05.015.
5
6
Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects.
Osteoarthritis Cartilage. 2002 Jun;10(6):432-63. doi: 10.1053/joca.2002.0801.
7
Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique.
Arch Biochem Biophys. 1998 Mar 15;351(2):207-19. doi: 10.1006/abbi.1997.0507.
8
Cartilage repair. A critical review.
Acta Orthop Scand. 1996 Oct;67(5):523-9. doi: 10.3109/17453679608996682.
9
Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue.
Biochim Biophys Acta. 1986 Sep 4;883(2):173-7. doi: 10.1016/0304-4165(86)90306-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验