Suppr超能文献

利用肿瘤代谢:临床转化的挑战。

Exploiting tumor metabolism: challenges for clinical translation.

机构信息

Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

J Clin Invest. 2013 Sep;123(9):3648-51. doi: 10.1172/JCI72391. Epub 2013 Sep 3.

Abstract

The metabolism of cancer cells differs from most normal cells, but how to exploit this difference for patient benefit is incompletely understood. Cancer cells require altered metabolism to efficiently incorporate nutrients into biomass and support abnormal proliferation. In addition, the survival of tumor cells outside of a normal tissue context requires adaptation of metabolism to different microenvironments. Some existing chemotherapies target metabolic enzymes, and there is a resurgent interest in developing new cancer drugs that interfere with metabolism. Success with this approach depends on understanding why specific metabolic pathways are important for cancer cells, determining how best to select patients, and developing technologies for monitoring patient response to therapies that target metabolic enzymes. The articles in this Review series address these issues, with a focus on how altered metabolism might influence tumor progression and how this knowledge might inform the use of new therapies targeting cancer metabolism. Emerging biomarker strategies to guide drug development are also highlighted.

摘要

癌细胞的代谢与大多数正常细胞不同,但如何利用这种差异为患者带来益处尚不完全清楚。癌细胞需要改变代谢以有效地将营养物质纳入生物量并支持异常增殖。此外,肿瘤细胞在正常组织环境之外的存活需要适应不同的微环境。一些现有的化疗药物针对代谢酶,人们重新产生了开发新的癌症药物以干扰代谢的兴趣。这种方法的成功取决于理解为什么特定的代谢途径对癌细胞很重要,确定如何最好地选择患者,以及开发用于监测针对代谢酶的治疗方法的患者反应的技术。本综述系列中的文章解决了这些问题,重点关注代谢改变如何影响肿瘤进展,以及这些知识如何为新的靶向癌症代谢的治疗方法的应用提供信息。还突出了新兴的生物标志物策略来指导药物开发。

相似文献

1
Exploiting tumor metabolism: challenges for clinical translation.
J Clin Invest. 2013 Sep;123(9):3648-51. doi: 10.1172/JCI72391. Epub 2013 Sep 3.
2
Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.
Biochim Biophys Acta Bioenerg. 2017 Aug;1858(8):674-685. doi: 10.1016/j.bbabio.2017.02.005. Epub 2017 Feb 16.
3
Challenges and Opportunities in the Development of Serine Synthetic Pathway Inhibitors for Cancer Therapy.
J Med Chem. 2017 Feb 23;60(4):1227-1237. doi: 10.1021/acs.jmedchem.6b01167. Epub 2016 Dec 22.
4
Targeting the Warburg effect for cancer treatment: Ketogenic diets for management of glioma.
Semin Cancer Biol. 2019 Jun;56:135-148. doi: 10.1016/j.semcancer.2017.12.011. Epub 2017 Dec 30.
5
Targeting glucose metabolism in patients with cancer.
Cancer. 2014 Mar 15;120(6):774-80. doi: 10.1002/cncr.28501. Epub 2013 Dec 2.
6
Is target validation all we need?
Curr Opin Pharmacol. 2014 Aug;17:81-6. doi: 10.1016/j.coph.2014.09.004. Epub 2014 Sep 27.
7
Clinical development of cancer therapeutics that target metabolism.
QJM. 2016 Jun;109(6):367-72. doi: 10.1093/qjmed/hcv181. Epub 2015 Oct 1.
8
Optimising translational oncology in clinical practice: strategies to accelerate progress in drug development.
Cancer Treat Rev. 2015 Feb;41(2):129-35. doi: 10.1016/j.ctrv.2014.12.004. Epub 2014 Dec 16.
9
Metabolic targeting of malignant tumors: small-molecule inhibitors of bioenergetic flux.
Recent Pat Anticancer Drug Discov. 2011 Jan;6(1):6-14. doi: 10.2174/157489211793980114.
10
Targeting mTOR and Metabolism in Cancer: Lessons and Innovations.
Cells. 2019 Dec 6;8(12):1584. doi: 10.3390/cells8121584.

引用本文的文献

1
Critical roles and clinical perspectives of RNA methylation in cancer.
MedComm (2020). 2024 May 7;5(5):e559. doi: 10.1002/mco2.559. eCollection 2024 May.
2
Specific changes in amino acid profiles in monocytes of patients with breast, lung, colorectal and ovarian cancers.
Front Immunol. 2024 Jan 8;14:1332043. doi: 10.3389/fimmu.2023.1332043. eCollection 2023.
4
Mitochondrial metabolic determinants of multiple myeloma growth, survival, and therapy efficacy.
Front Oncol. 2022 Sep 16;12:1000106. doi: 10.3389/fonc.2022.1000106. eCollection 2022.
5
Vascular Normalization: A New Window Opened for Cancer Therapies.
Front Oncol. 2021 Aug 12;11:719836. doi: 10.3389/fonc.2021.719836. eCollection 2021.
6
The Metabolic Landscape of RAS-Driven Cancers from biology to therapy.
Nat Cancer. 2021 Mar;2(3):271-283. doi: 10.1038/s43018-021-00184-x. Epub 2021 Mar 24.
7
Pyrazole-Based Lactate Dehydrogenase Inhibitors with Optimized Cell Activity and Pharmacokinetic Properties.
J Med Chem. 2020 Oct 8;63(19):10984-11011. doi: 10.1021/acs.jmedchem.0c00916. Epub 2020 Sep 27.
8
Epigenetic CRISPR Screens Identify as a Therapeutic Vulnerability in Non-Small Cell Lung Cancer.
Cancer Res. 2020 Sep 1;80(17):3556-3567. doi: 10.1158/0008-5472.CAN-19-3782. Epub 2020 Jul 9.
9
Exploiting Cancer's Tactics to Make Cancer a Manageable Chronic Disease.
Cancers (Basel). 2020 Jun 22;12(6):1649. doi: 10.3390/cancers12061649.
10
Transcriptional suppression of AMPKα1 promotes breast cancer metastasis upon oncogene activation.
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):8013-8021. doi: 10.1073/pnas.1914786117. Epub 2020 Mar 19.

本文引用的文献

1
Potential applications for biguanides in oncology.
J Clin Invest. 2013 Sep;123(9):3693-700. doi: 10.1172/JCI67232. Epub 2013 Sep 3.
2
Targeting lactate metabolism for cancer therapeutics.
J Clin Invest. 2013 Sep;123(9):3685-92. doi: 10.1172/JCI69741. Epub 2013 Sep 3.
3
Glutamine and cancer: cell biology, physiology, and clinical opportunities.
J Clin Invest. 2013 Sep;123(9):3678-84. doi: 10.1172/JCI69600. Epub 2013 Sep 3.
4
Isocitrate dehydrogenase mutations in leukemia.
J Clin Invest. 2013 Sep;123(9):3672-7. doi: 10.1172/JCI67266. Epub 2013 Sep 3.
5
HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations.
J Clin Invest. 2013 Sep;123(9):3664-71. doi: 10.1172/JCI67230. Epub 2013 Sep 3.
6
Detection of oncogenic IDH1 mutations using magnetic resonance spectroscopy of 2-hydroxyglutarate.
J Clin Invest. 2013 Sep;123(9):3659-63. doi: 10.1172/JCI67229. Epub 2013 Sep 3.
7
Oncometabolites: linking altered metabolism with cancer.
J Clin Invest. 2013 Sep;123(9):3652-8. doi: 10.1172/JCI67228. Epub 2013 Sep 3.
9
The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling.
Mol Cell. 2013 Jul 25;51(2):236-48. doi: 10.1016/j.molcel.2013.05.003. Epub 2013 Jun 6.
10
Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids.
Proc Natl Acad Sci U S A. 2013 May 28;110(22):8882-7. doi: 10.1073/pnas.1307237110. Epub 2013 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验