Suppr超能文献

针对癌症患者的葡萄糖代谢。

Targeting glucose metabolism in patients with cancer.

机构信息

Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, Georgia.

出版信息

Cancer. 2014 Mar 15;120(6):774-80. doi: 10.1002/cncr.28501. Epub 2013 Dec 2.

Abstract

Nearly a century ago, Otto Warburg made the astute observation that the metabolic properties of cancer cells differ markedly from those of normal cells. Several decades passed before the concept of exploiting cancer cell metabolism came into clinical practice with the advent of chemotherapy, the underlying principle of which is to target rapidly dividing cells by interfering with critical processes that are all, on some level, driven by cell metabolism. Although chemotherapy can be quite effective, success rates are highly variable and the adverse effects associated with treatment often outweigh the benefits due to the fact that chemotherapy is indiscriminately cytotoxic against all rapidly dividing cells, cancerous or healthy. During the past several years, a more intricate understanding of cancer cell metabolism has permitted the development of targeted therapies that aim to specifically target cancer cells and spare healthy tissue by exploiting the altered metabolism of cancer cells. The identification of new metabolic targets and the subsequent development of small-molecule inhibitors of metabolic enzymes have demonstrated the utility and promise of targeting cancer cell metabolism as an anticancer strategy. This review summarizes recent advances in the identification and characterization of several metabolic enzymes as emerging anticancer targets.

摘要

近一个世纪前,奥托·瓦尔堡(Otto Warburg)敏锐地观察到癌细胞的代谢特性与正常细胞有明显的不同。几十年过去了,随着化疗的出现,利用癌细胞代谢的概念才进入临床实践,其基本原理是通过干扰所有在某种程度上都由细胞代谢驱动的关键过程,靶向快速分裂的细胞。虽然化疗可能非常有效,但成功率差异很大,并且由于化疗不分青红皂白地对所有快速分裂的细胞(包括癌细胞和健康细胞)具有细胞毒性,因此与治疗相关的不良反应常常超过其益处。在过去几年中,对癌细胞代谢的更深入理解使得靶向治疗得以发展,这些治疗方法旨在通过利用癌细胞代谢的改变来特异性地靶向癌细胞并保护健康组织。鉴定新的代谢靶点和随后开发代谢酶的小分子抑制剂已经证明了靶向癌细胞代谢作为抗癌策略的实用性和前景。本文综述了近年来在鉴定和表征几种代谢酶作为新兴抗癌靶点方面的进展。

相似文献

1
Targeting glucose metabolism in patients with cancer.
Cancer. 2014 Mar 15;120(6):774-80. doi: 10.1002/cncr.28501. Epub 2013 Dec 2.
2
Natural Products and Derivatives Targeting at Cancer Energy Metabolism: A Potential Treatment Strategy.
Curr Med Sci. 2020 Apr;40(2):205-217. doi: 10.1007/s11596-020-2165-5. Epub 2020 Apr 26.
3
Glucose Addiction in Cancer Therapy: Advances and Drawbacks.
Curr Drug Metab. 2015;16(3):221-42. doi: 10.2174/1389200216666150602145145.
4
Emerging metabolic targets in cancer therapy.
Front Biosci (Landmark Ed). 2011 Jan 1;16(5):1844-60. doi: 10.2741/3826.
5
Targeting glucose metabolism: an emerging concept for anticancer therapy.
Am J Clin Oncol. 2011 Dec;34(6):628-35. doi: 10.1097/COC.0b013e3181e84dec.
6
Clinical development of cancer therapeutics that target metabolism.
QJM. 2016 Jun;109(6):367-72. doi: 10.1093/qjmed/hcv181. Epub 2015 Oct 1.
7
Targeting the Warburg effect for cancer treatment: Ketogenic diets for management of glioma.
Semin Cancer Biol. 2019 Jun;56:135-148. doi: 10.1016/j.semcancer.2017.12.011. Epub 2017 Dec 30.
9
Altered glutamine metabolism and therapeutic opportunities for lung cancer.
Clin Lung Cancer. 2014 Jan;15(1):7-15. doi: 10.1016/j.cllc.2013.09.001. Epub 2013 Nov 13.
10
Metabolic targeting of malignant tumors: small-molecule inhibitors of bioenergetic flux.
Recent Pat Anticancer Drug Discov. 2011 Jan;6(1):6-14. doi: 10.2174/157489211793980114.

引用本文的文献

2
The role of metabolic reprogramming in immune escape of triple-negative breast cancer.
Front Immunol. 2024 Aug 13;15:1424237. doi: 10.3389/fimmu.2024.1424237. eCollection 2024.
3
Inhibition of Distal Glycolytic Enzymes Suppresses Fibroblast Activation without Deleterious Bioenergetic Effects.
Am J Respir Cell Mol Biol. 2024 Jun;70(6):519-521. doi: 10.1165/rcmb.2023-0193LE.
4
Crosstalk between lipid metabolism and EMT: emerging mechanisms and cancer therapy.
Mol Cell Biochem. 2025 Jan;480(1):103-118. doi: 10.1007/s11010-024-04995-1. Epub 2024 Apr 15.
5
The regulatory relationship between NAMPT and PD-L1 in cancer and identification of a dual-targeting inhibitor.
EMBO Mol Med. 2024 Apr;16(4):885-903. doi: 10.1038/s44321-024-00051-z. Epub 2024 Mar 6.
7
Development and validation of a model for predicting the risk of prostate cancer.
Int Urol Nephrol. 2024 Mar;56(3):973-980. doi: 10.1007/s11255-023-03837-1. Epub 2023 Oct 13.
10
A High De Ritis Ratio is Associated with Mortality in Adult Trauma Patients.
Risk Manag Healthc Policy. 2023 May 12;16:879-887. doi: 10.2147/RMHP.S409345. eCollection 2023.

本文引用的文献

2
Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation.
Science. 2013 May 3;340(6132):622-6. doi: 10.1126/science.1234769. Epub 2013 Apr 4.
3
An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells.
Science. 2013 May 3;340(6132):626-30. doi: 10.1126/science.1236062. Epub 2013 Apr 4.
4
Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth.
Cancer Cell. 2012 Nov 13;22(5):585-600. doi: 10.1016/j.ccr.2012.09.020.
5
Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis.
Nat Chem Biol. 2012 Oct;8(10):839-47. doi: 10.1038/nchembio.1060.
6
Metabolic reprogramming: a cancer hallmark even warburg did not anticipate.
Cancer Cell. 2012 Mar 20;21(3):297-308. doi: 10.1016/j.ccr.2012.02.014.
7
IDH mutation impairs histone demethylation and results in a block to cell differentiation.
Nature. 2012 Feb 15;483(7390):474-8. doi: 10.1038/nature10860.
9
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia.
Nature. 2011 Nov 20;481(7381):380-4. doi: 10.1038/nature10602.
10
Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation.
Nature. 2011 Dec 1;480(7375):118-22. doi: 10.1038/nature10598.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验