Department of Physics, Applied Physics and Astronomy, Binghamton University , Binghamton, New York 13902, United States.
Nano Lett. 2013 Oct 9;13(10):4857-61. doi: 10.1021/nl402716d. Epub 2013 Sep 5.
We have combined hard X-ray photoelectron spectroscopy with angular dependent O K-edge and V L-edge X-ray absorption spectroscopy to study the electronic structure of metallic and insulating end point phases in 4.1 nm thick (14 units cells along the c-axis of VO2) films on TiO2(001) substrates, each displaying an abrupt MIT centered at ~300 K with width <20 K and a resistance change of ΔR/R > 10(3). The dimensions, quality of the films, and stoichiometry were confirmed by a combination of scanning transmission electron microscopy with electron energy loss spectroscopy, X-ray spectroscopy, and resistivity measurements. The measured end point phases agree with their bulk counterparts. This clearly shows that, apart from the strain induced change in transition temperature, the underlying mechanism of the MIT for technologically relevant dimensions must be the same as the bulk for this orientation.
我们结合了硬 X 射线光电子能谱和角度依赖的 O K 边和 V L 边 X 射线吸收谱,研究了 TiO2(001) 衬底上 4.1nm 厚(沿 VO2 的 c 轴有 14 个单元)的金属和绝缘端相的电子结构,每个端相都在 ~300K 左右表现出一个突然的 MIT,宽度 <20K,电阻变化 ΔR/R > 10(3)。通过扫描透射电子显微镜与电子能量损失谱、X 射线谱和电阻率测量相结合,证实了薄膜的尺寸、质量和化学计量。测量的端相符合其体相的对应物。这清楚地表明,除了应变引起的相变温度变化之外,对于这种取向,技术相关尺寸的 MIT 的潜在机制必须与体相相同。