Quackenbush Nicholas F, Paik Hanjong, Woicik Joseph C, Arena Dario A, Schlom Darrell G, Piper Louis F J
Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY 13902, USA.
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.
Materials (Basel). 2015 Aug 21;8(8):5452-5466. doi: 10.3390/ma8085255.
Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe a low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Our results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. More generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions.
外延超薄氧化物薄膜能够承受远高于其体材料的百分之几水平的大应变,从而实现氧化物中的应变工程,进而可以调整各种现象。在这些减小的尺寸(通常<10纳米)下,衬底的贡献可能会使外延层的信号相形见绌,使得难以将外延层的性质与体材料区分开来。对于氧化物/氧化物体系尤其如此。在此,我们采用硬X射线光电子能谱(HAXPES)和角分辨软X射线吸收光谱(XAS)相结合的方法,研究了厚度范围从7.5纳米到1纳米的外延VO2/TiO2(100)薄膜。我们观察到,无论薄膜厚度如何,在低温(300K)下都存在具有钒-钒(V-V)二聚体证据的绝缘相,而在高温(400K)下则存在不存在V-V二聚体的金属相。我们的结果证实,金属-绝缘体转变可以在原子尺度上存在,并且当界面原子级尖锐时,双轴应变仍然可以用于控制其转变温度。更一般地说,我们的案例研究突出了使用非破坏性XAS和HAXPES来提取有关外延层界面质量以及与这些尺寸下的奇异现象相关的光谱特征信息的好处。