Department of Biology, Drexel University, Philadelphia, PA 19104, USA.
Department of Biology, Drexel University, Philadelphia, PA 19104, USA.
Curr Biol. 2019 Jul 8;29(13):2174-2182.e7. doi: 10.1016/j.cub.2019.05.050. Epub 2019 Jun 13.
Abscission is the terminal step of mitosis that physically separates two daughter cells [1, 2]. Abscission requires the endocytic sorting complex required for transport (ESCRT), a molecular machinery of multiple subcomplexes (ESCRT-I/II/III) that promotes membrane remodeling and scission [3-5]. Recruitment of ESCRT-I/II complexes to the midbody of telophase cells initiates ESCRT-III assembly into two rings, which subsequently expand into helices and spirals that narrow down to the incipient site of abscission [6-8]. ESCRT-III assembly is highly dynamic and spatiotemporally ordered, but the underlying mechanisms are poorly understood. Here, we report that, after cleavage furrow closure, septins form a membrane-bound double ring that controls the organization and function of ESCRT-III. The septin double ring demarcates the sites of ESCRT-III assembly into rings and disassembles before ESCRT-III rings expand into helices and spirals. We show that septin 9 (SEPT9) depletion, which abrogates abscission, impairs recruitment of VPS25 (ESCRT-II) and CHMP6 (ESCRT-III). Strikingly, ESCRT-III subunits (CHMP4B and CHMP2A/B) accumulate to the midbody, but they are highly disorganized, failing to form symmetric rings and to expand laterally into the cone-shaped helices and spirals of abscission. We found that SEPT9 interacts directly with the ubiquitin E2 variant (UEV) domain of ESCRT-I protein TSG101 through two N-terminal PTAP motifs, which are required for the recruitment of VPS25 and CHMP6, and the spatial organization of ESCRT-III (CHMP4B and CHMP2B) into functional rings. These results reveal that septins function in the ESCRT-I-ESCRT-II-CHMP6 pathway of ESCRT-III assembly and provide a framework for the spatiotemporal control of the ESCRT machinery of cytokinetic abscission.
胞质分裂是有丝分裂的最后一步,它将两个子细胞物理分离[1,2]。胞质分裂需要内吞分选复合物运输所必需的(ESCRT),这是一种由多个亚基组成的分子机械(ESCRT-I/II/III),它促进膜重塑和分裂[3-5]。ESCRT-I/II 复合物招募到末期细胞的中间体启动 ESCRT-III 组装成两个环,随后扩展成螺旋和螺旋,逐渐缩小到胞质分裂的起始位点[6-8]。ESCRT-III 组装是高度动态和时空有序的,但潜在的机制知之甚少。在这里,我们报告说,在分裂沟闭合后,隔膜蛋白形成一个膜结合的双环,控制 ESCRT-III 的组织和功能。隔膜蛋白双环标记 ESCRT-III 组装成环的位置,并在 ESCRT-III 环扩展成螺旋和螺旋之前解体。我们表明,隔膜蛋白 9(SEPT9)的耗竭,这会阻断胞质分裂,会损害 VPS25(ESCRT-II)和 CHMP6(ESCRT-III)的招募。引人注目的是,ESCRT-III 亚基(CHMP4B 和 CHMP2A/B)积累到中间体,但它们高度混乱,无法形成对称的环,也无法向侧面扩展到胞质分裂的锥形螺旋。我们发现 SEPT9 通过两个 N 端 PTAP 基序直接与 ESCRT-I 蛋白 TSG101 的泛素 E2 变体(UEV)结构域相互作用,这对于 VPS25 和 CHMP6 的招募以及 ESCRT-III(CHMP4B 和 CHMP2B)的空间组织是必需的,形成功能性环。这些结果表明,隔膜蛋白在 ESCRT-III 组装的 ESCRT-I-ESCRT-II-CHMP6 途径中发挥作用,并为细胞分裂胞质分裂的 ESCRT 机制的时空控制提供了一个框架。