Toronto Health Economics and Technology Assessment (THETA) Collaborative, Toronto, Canada.
BMC Med Res Methodol. 2013 Sep 4;13:109. doi: 10.1186/1471-2288-13-109.
IMPACT is an epidemiological model that has been used to estimate how increased treatment uptakes affect mortality and related outcomes. The model calculations require the use of case fatality rate estimates under no treatment. Due to the lack of data, rates where treatment is partially present are often used instead, introducing bias. A method that does not rely on no-treatment case fatality rate estimates is needed.
Potential Impact Fraction (PIF) measures the proportional reduction in the disease or mortality risk, when the distribution of a risk factor changes. Here, we first describe a probabilistic framework for interpreting quantities used in the IMPACT model, and then we show how this is connected with PIF, facilitating its use for the estimation of the relative reduction of mortality caused by treatment uptake increase. We compare the proposed and standard methods to estimate the reduction of cardiovascular disease deaths in Ontario, if utilization of coronary heart disease interventions was increased to the level of 90%.
Using the proposed method, we estimated that increasing treatment to benchmark levels uptake results in a reduction of 22.5% in cardiovascular mortality. The standard method gives a reduction of 20.8%.
Here we present an alternative method for the estimation of the effect of treatment uptake change on mortality. Our example suggests that the bias associated with the standard method may be substantial. This approach offers a useful tool for epidemiological and health care research and policy.
IMPACT 是一种流行病学模型,用于估计治疗利用率的增加如何影响死亡率和相关结果。模型计算需要使用无治疗情况下的病死率估计值。由于缺乏数据,通常会使用存在部分治疗的病死率估计值,从而引入了偏差。因此,需要一种不依赖无治疗病死率估计值的方法。
潜在影响分数(PIF)衡量当风险因素分布发生变化时,疾病或死亡率风险的比例降低。在这里,我们首先描述了一种用于解释 IMPACT 模型中使用的量的概率框架,然后展示了如何将其与 PIF 联系起来,从而方便用于估计治疗利用率增加引起的死亡率相对降低。我们比较了提出的和标准方法,以估计如果将冠心病干预的利用率提高到 90%,安大略省心血管疾病死亡人数的减少情况。
使用提出的方法,我们估计将治疗提高到基准水平会导致心血管死亡率降低 22.5%。标准方法给出的降低幅度为 20.8%。
在这里,我们提出了一种估计治疗利用率变化对死亡率影响的替代方法。我们的示例表明,标准方法可能存在相当大的偏差。这种方法为流行病学和医疗保健研究和政策提供了有用的工具。