Suppr超能文献

特邀评论:社会流行病学的越野之旅——探索、因果关系、转化。

Invited commentary: Off-roading with social epidemiology--exploration, causation, translation.

出版信息

Am J Epidemiol. 2013 Sep 15;178(6):858-63. doi: 10.1093/aje/kwt145. Epub 2013 Sep 5.

Abstract

Population health improvements are the most relevant yardstick against which to evaluate the success of social epidemiology. In coming years, social epidemiology must increasingly emphasize research that facilitates translation into health improvements, with continued focus on macro-level social determinants of health. Given the evidence that the effects of social interventions often differ across population subgroups, systematic and transparent exploration of the heterogeneity of health determinants across populations will help inform effective interventions. This research should consider both biological and social risk factors and effect modifiers. We also recommend that social epidemiologists take advantage of recent revolutionary improvements in data availability and computing power to examine new hypotheses and expand our repertoire of study designs. Better data and computing power should facilitate underused analytic approaches, such as instrumental variables, simulation studies and models of complex systems, and sensitivity analyses of model biases. Many data-driven machine-learning approaches are also now computationally feasible and likely to improve both prediction models and causal inference in social epidemiology. Finally, we emphasize the importance of specifying exposures corresponding with realistic interventions and policy options. Effect estimates for directly modifiable, clearly defined health determinants are most relevant for building translational social epidemiology to reduce disparities and improve population health.

摘要

人群健康的改善是评估社会流行病学成功与否的最相关标准。在未来几年,社会流行病学必须越来越强调促进健康改善的研究,同时继续关注健康的宏观社会决定因素。鉴于社会干预措施的效果往往因人群亚组而异的证据,系统和透明地探索人群健康决定因素的异质性将有助于为有效的干预措施提供信息。这项研究应该考虑生物和社会风险因素以及效应修饰剂。我们还建议社会流行病学家利用最近数据可用性和计算能力的革命性进步,检验新的假设并扩大我们的研究设计组合。更好的数据和计算能力应该有助于利用未充分利用的分析方法,如工具变量、模拟研究和复杂系统模型,以及对模型偏差的敏感性分析。许多基于数据的机器学习方法现在在计算上也是可行的,并且可能会提高社会流行病学中的预测模型和因果推断。最后,我们强调指定与现实干预措施和政策选择相对应的暴露的重要性。直接可改变的、明确定义的健康决定因素的效应估计对于构建转化社会流行病学以减少差异和改善人口健康最为重要。

相似文献

4
Invited commentary: Paths and pathologies of social epidemiology.特邀评论:社会流行病学的途径和病理。
Am J Epidemiol. 2013 Sep 15;178(6):850-1. doi: 10.1093/aje/kwt144. Epub 2013 Sep 5.
5
Six paths for the future of social epidemiology.社会流行病学的未来六条路径。
Am J Epidemiol. 2013 Sep 15;178(6):843-9. doi: 10.1093/aje/kwt148. Epub 2013 Sep 5.
6
Isn't all epidemiology social?难道所有流行病学都与社会因素相关吗?
Am J Epidemiol. 2013 Sep 15;178(6):841-2. doi: 10.1093/aje/kwt146. Epub 2013 Sep 5.
7
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

9
Predicting mortality from 57 economic, behavioral, social, and psychological factors.从 57 个经济、行为、社会和心理因素预测死亡率。
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16273-16282. doi: 10.1073/pnas.1918455117. Epub 2020 Jun 22.

本文引用的文献

1
Six paths for the future of social epidemiology.社会流行病学的未来六条路径。
Am J Epidemiol. 2013 Sep 15;178(6):843-9. doi: 10.1093/aje/kwt148. Epub 2013 Sep 5.
5
The effects of housing and neighborhood conditions on child mortality.住房和邻里条件对儿童死亡率的影响。
J Health Econ. 2013 Jan;32(1):195-206. doi: 10.1016/j.jhealeco.2012.10.008. Epub 2012 Oct 30.
7
What determines health: a causal analysis using county level data.是什么决定了健康:基于县级数据的因果分析。
Eur J Health Econ. 2013 Oct;14(5):821-34. doi: 10.1007/s10198-012-0429-0. Epub 2012 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验