Am J Epidemiol. 2022 Jan 1;191(1):188-197. doi: 10.1093/aje/kwab219.
Agent-based modeling and g-computation can both be used to estimate impacts of intervening on complex systems. We explored each modeling approach within an applied example: interventions to reduce posttraumatic stress disorder (PTSD). We used data from a cohort of 2,282 adults representative of the adult population of the New York City metropolitan area from 2002-2006, of whom 16.3% developed PTSD over their lifetimes. We built 4 models: g-computation, an agent-based model (ABM) with no between-agent interactions, an ABM with violent-interaction dynamics, and an ABM with neighborhood dynamics. Three interventions were tested: 1) reducing violent victimization by 37.2% (real-world reduction); 2) reducing violent victimization by100%; and 3) supplementing the income of 20% of lower-income participants. The g-computation model estimated population-level PTSD risk reductions of 0.12% (95% confidence interval (CI): -0.16, 0.29), 0.28% (95% CI: -0.30, 0.70), and 1.55% (95% CI: 0.40, 2.12), respectively. The ABM with no interactions replicated the findings from g-computation. Introduction of interaction dynamics modestly decreased estimated intervention effects (income-supplement risk reduction dropped to 1.47%), whereas introduction of neighborhood dynamics modestly increased effectiveness (income-supplement risk reduction increased to 1.58%). Compared with g-computation, agent-based modeling permitted deeper exploration of complex systems dynamics at the cost of further assumptions.
基于主体的建模和 g 计算都可用于估计干预复杂系统的影响。我们在一个应用示例中探索了每种建模方法:干预以减少创伤后应激障碍(PTSD)。我们使用了 2002-2006 年代表纽约市大都市区成年人口的 2282 名成年人的队列数据,其中 16.3%在其一生中患有 PTSD。我们构建了 4 种模型:g 计算、没有个体间相互作用的基于主体的模型(ABM)、具有暴力相互作用动态的 ABM 和具有邻里动态的 ABM。测试了三种干预措施:1)将暴力受害率降低 37.2%(实际降低);2)将暴力受害率降低 100%;3)补充 20%低收入参与者的收入。g 计算模型估计人群 PTSD 风险降低分别为 0.12%(95%置信区间(CI):-0.16,0.29)、0.28%(95% CI:-0.30,0.70)和 1.55%(95% CI:0.40,2.12)。没有相互作用的 ABM 复制了 g 计算的结果。引入相互作用动态略微降低了干预效果的估计(收入补充风险降低降至 1.47%),而引入邻里动态则略微提高了效果(收入补充风险降低增加至 1.58%)。与 g 计算相比,基于主体的建模允许以进一步假设为代价更深入地探索复杂系统动态。