State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
Microb Cell Fact. 2013 Sep 8;12:77. doi: 10.1186/1475-2859-12-77.
Polyketides are one of the most important classes of secondary metabolites and usually make good drugs. Currently, heterologous production of fungal polyketides for developing a high potential industrial application system with high production capacity and pharmaceutical feasibility was still at its infancy. Pichia pastoris is a highly successful system for the high production of a variety of heterologous proteins. In this work, we aim to develop a P. pastoris based in vivo fungal polyketide production system for first time and evaluate its feasibility for future industrial application.
A recombinant P. pastoris GS115-NpgA-ATX with Aspergillus nidulans phosphopantetheinyl transferase (PPtase) gene npgA and Aspergillus terrus 6-methylsalicylic acid (6-MSA) synthase (6-MSAS) gene atX was constructed. A specific compound was isolated and identified as 6-MSA by HPLC, LC-MS and NMR. Transcription of both genes were detected. In 5-L bioreactor, the GS115-NpgA-ATX grew well and produced 6-MSA quickly until reached a high value of 2.2 g/L by methanol induction for 20 hours. Thereafter, the cells turned to death ascribing to high concentration of antimicrobial 6-MSA. The distribution of 6-MSA changed that during early and late induction phase it existed more in supernatant while during intermediate stage it mainly located intracellular. Different from 6-MSA production strain, recombinant M. purpureus pksCT expression strains for citrinin intermediate production, no matter PksCT located in cytoplasm or in peroxisomes, did not produce any specific compound. However, both npgA and pksCT transcripted effectively in cells and western blot analysis proved the expression of PPtase. Then the PPTase was expressed and purified, marked by fluorescent probes, and reacted with purified ACP domain and its mutant ACPm of PksCT. Fluoresence was only observed in ACP but not ACPm, indicating that the PPTase worked well with ACP to make it bioactive holo-ACP. Thus, some other factors may affect polyketide synthesis that include activities of the individual catalytic domains and release of the product from the synthase of PksCT.
An efficient P. pastoris expression system of fungal polyketides was successfully constructed. It produced a high production of 6-MSA and holds potential for future industrial application of 6-MSA and other fungal polyketides.
聚酮类化合物是最重要的次级代谢产物之一,通常是很好的药物。目前,为了开发具有高生产能力和药物可行性的高潜力工业应用系统,异源生产真菌聚酮类化合物仍处于起步阶段。巴斯德毕赤酵母是一种非常成功的用于生产各种异源蛋白的系统。在这项工作中,我们旨在首次开发基于巴斯德毕赤酵母的体内真菌聚酮类化合物生产系统,并评估其未来工业应用的可行性。
构建了含有 Aspergillus nidulans 磷酸泛酰巯基乙胺转移酶(PPtase)基因 npgA 和 Aspergillus terrus 6-甲基水杨酸(6-MSA)合酶(6-MSAS)基因 atX 的重组巴斯德毕赤酵母 GS115-NpgA-ATX。通过 HPLC、LC-MS 和 NMR 鉴定,分离并鉴定出一种特定的化合物为 6-MSA。检测到两个基因的转录。在 5-L 生物反应器中,GS115-NpgA-ATX 生长良好,并在甲醇诱导 20 小时后迅速产生 6-MSA,直到达到 2.2g/L 的高值。此后,由于高浓度的抗菌 6-MSA,细胞死亡。6-MSA 的分布发生变化,在早期和晚期诱导阶段,它主要存在于上清液中,而在中间阶段,它主要位于细胞内。与 6-MSA 生产菌株不同,用于 citrinin 中间产物生产的重组 M. purpureus pksCT 表达菌株,无论 PksCT 位于细胞质中还是过氧化物酶体中,都没有产生任何特定的化合物。然而,npgA 和 pksCT 在细胞中有效地转录,并且 Western blot 分析证明了 PPtase 的表达。然后表达和纯化 PPTase,用荧光探针标记,并与 PksCT 的纯化 ACP 结构域及其突变 ACPm 反应。只有在 ACP 中观察到荧光,而在 ACPm 中没有观察到荧光,表明 PPTase 与 ACP 很好地反应,使其具有生物活性的全酶-ACP。因此,其他一些因素可能会影响聚酮类化合物的合成,包括单个催化结构域的活性和 PksCT 合酶释放产物的能力。
成功构建了一种高效的巴斯德毕赤酵母真菌聚酮类化合物表达系统。它产生了 6-MSA 的高产,并且具有未来工业应用 6-MSA 和其他真菌聚酮类化合物的潜力。