Suppr超能文献

急性创伤性脑损伤中脑活动的脑电图逆定位作为手术、监测和治疗的指导

Electroencephalographic inverse localization of brain activity in acute traumatic brain injury as a guide to surgery, monitoring and treatment.

作者信息

Irimia Andrei, Goh S-Y Matthew, Torgerson Carinna M, Stein Nathan R, Chambers Micah C, Vespa Paul M, Van Horn John D

机构信息

The Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, USA.

出版信息

Clin Neurol Neurosurg. 2013 Oct;115(10):2159-65. doi: 10.1016/j.clineuro.2013.08.003. Epub 2013 Aug 12.

Abstract

OBJECTIVE

To inverse-localize epileptiform cortical electrical activity recorded from severe traumatic brain injury (TBI) patients using electroencephalography (EEG).

METHODS

Three acute TBI cases were imaged using computed tomography (CT) and multimodal magnetic resonance imaging (MRI). Semi-automatic segmentation was performed to partition the complete TBI head into 25 distinct tissue types, including 6 tissue types accounting for pathology. Segmentations were employed to generate a finite element method model of the head, and EEG activity generators were modeled as dipolar currents distributed over the cortical surface.

RESULTS

We demonstrate anatomically faithful localization of EEG generators responsible for epileptiform discharges in severe TBI. By accounting for injury-related tissue conductivity changes, our work offers the most realistic implementation currently available for the inverse estimation of cortical activity in TBI.

CONCLUSION

Whereas standard localization techniques are available for electrical activity mapping in uninjured brains, they are rarely applied to acute TBI. Modern models of TBI-induced pathology can inform the localization of epileptogenic foci, improve surgical efficacy, contribute to the improvement of critical care monitoring and provide guidance for patient-tailored treatment. With approaches such as this, neurosurgeons and neurologists can study brain activity in acute TBI and obtain insights regarding injury effects upon brain metabolism and clinical outcome.

摘要

目的

利用脑电图(EEG)对重度创伤性脑损伤(TBI)患者记录的癫痫样皮质电活动进行反向定位。

方法

对3例急性TBI病例进行计算机断层扫描(CT)和多模态磁共振成像(MRI)检查。进行半自动分割,将完整的TBI头部划分为25种不同的组织类型,包括6种与病理相关的组织类型。利用分割结果生成头部的有限元方法模型,并将EEG活动发生器建模为分布在皮质表面的偶极电流。

结果

我们展示了在重度TBI中对负责癫痫样放电的EEG发生器进行解剖学上准确的定位。通过考虑与损伤相关的组织电导率变化,我们的工作为TBI中皮质活动的反向估计提供了目前最逼真的实现方法。

结论

虽然标准定位技术可用于未受伤大脑的电活动映射,但很少应用于急性TBI。TBI诱发病理的现代模型可以为致痫灶的定位提供信息,提高手术疗效,有助于改善重症监护监测,并为个性化治疗提供指导。通过这样的方法,神经外科医生和神经科医生可以研究急性TBI中的脑活动,并获得有关损伤对脑代谢和临床结果影响的见解。

相似文献

1
Electroencephalographic inverse localization of brain activity in acute traumatic brain injury as a guide to surgery, monitoring and treatment.
Clin Neurol Neurosurg. 2013 Oct;115(10):2159-65. doi: 10.1016/j.clineuro.2013.08.003. Epub 2013 Aug 12.
2
Forward and inverse electroencephalographic modeling in health and in acute traumatic brain injury.
Clin Neurophysiol. 2013 Nov;124(11):2129-45. doi: 10.1016/j.clinph.2013.04.336. Epub 2013 Jun 6.
3
Surgical management of traumatic brain injury: a comparative-effectiveness study of 2 centers.
J Neurosurg. 2014 Feb;120(2):434-46. doi: 10.3171/2013.9.JNS13581. Epub 2013 Nov 1.
4
Surgical Treatment of Severe Traumatic Brain Injury in Switzerland: Results from a Multicenter Study.
J Neurol Surg A Cent Eur Neurosurg. 2016 Jan;77(1):36-45. doi: 10.1055/s-0035-1563556. Epub 2015 Sep 9.
6
Electrode localization for planning surgical resection of the epileptogenic zone in pediatric epilepsy.
Int J Comput Assist Radiol Surg. 2014 Jan;9(1):91-105. doi: 10.1007/s11548-013-0915-6. Epub 2013 Jun 23.
8
Fluctuations in cortical synchronization in pediatric traumatic brain injury.
J Neurotrauma. 2008 Jun;25(6):615-27. doi: 10.1089/neu.2007.0474.
10
Surgery after intracranial investigation with subdural electrodes in patients with drug-resistant focal epilepsy: outcome and complications.
Neurosurg Rev. 2012 Oct;35(4):519-26; discussion 526. doi: 10.1007/s10143-012-0382-5. Epub 2012 Mar 22.

引用本文的文献

1
Neuroinformatics and Analysis of Traumatic Brain Injury and Related Conditions.
Neuroinformatics. 2024 Oct;22(4):569-572. doi: 10.1007/s12021-024-09691-5.
2
Mild Traumatic Brain Injury Results in Significant and Lasting Cortical Demyelination.
Front Neurol. 2022 Jun 23;13:854396. doi: 10.3389/fneur.2022.854396. eCollection 2022.
3
Functional Connectome Dynamics After Mild Traumatic Brain Injury According to Age and Sex.
Front Aging Neurosci. 2022 May 18;14:852990. doi: 10.3389/fnagi.2022.852990. eCollection 2022.
4
5
Neuroimaging and Psychometric Assessment of Mild Cognitive Impairment After Traumatic Brain Injury.
Front Psychol. 2020 Jul 7;11:1423. doi: 10.3389/fpsyg.2020.01423. eCollection 2020.
6
Influence of Patient-Specific Head Modeling on EEG Source Imaging.
Comput Math Methods Med. 2020 Apr 3;2020:5076865. doi: 10.1155/2020/5076865. eCollection 2020.
7
Multimodal monitoring combined with hypothermia for the management of severe traumatic brain injury: A case report.
Exp Ther Med. 2018 May;15(5):4253-4258. doi: 10.3892/etm.2018.5994. Epub 2018 Mar 22.
8
Cerebral microhemorrhages due to traumatic brain injury and their effects on the aging human brain.
Neurobiol Aging. 2018 Jun;66:158-164. doi: 10.1016/j.neurobiolaging.2018.02.026. Epub 2018 Mar 6.
9
Alterations in neurovascular coupling following acute traumatic brain injury.
Neurophotonics. 2017 Oct;4(4):045007. doi: 10.1117/1.NPh.4.4.045007. Epub 2017 Dec 23.
10
Mobile Monitoring of Traumatic Brain Injury in Older Adults: Challenges and Opportunities.
Neuroinformatics. 2017 Jul;15(3):227-230. doi: 10.1007/s12021-017-9335-z.

本文引用的文献

2
Forward and inverse electroencephalographic modeling in health and in acute traumatic brain injury.
Clin Neurophysiol. 2013 Nov;124(11):2129-45. doi: 10.1016/j.clinph.2013.04.336. Epub 2013 Jun 6.
3
Time-frequency mixed-norm estimates: sparse M/EEG imaging with non-stationary source activations.
Neuroimage. 2013 Apr 15;70:410-22. doi: 10.1016/j.neuroimage.2012.12.051. Epub 2013 Jan 4.
4
Traumatic brain injury and psychogenic nonepileptic seizures yield worse outcomes.
Epilepsia. 2013 Apr;54(4):718-25. doi: 10.1111/epi.12053. Epub 2013 Jan 2.
6
Guidelines for the evaluation and management of status epilepticus.
Neurocrit Care. 2012 Aug;17(1):3-23. doi: 10.1007/s12028-012-9695-z.
7
Initial EEG predicts outcomes in a trial of levetiracetam vs. fosphenytoin for seizure prevention.
Epilepsy Behav. 2012 Mar;23(3):280-4. doi: 10.1016/j.yebeh.2011.12.005. Epub 2012 Feb 16.
8
3D Slicer as a tool for interactive brain tumor segmentation.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6982-4. doi: 10.1109/IEMBS.2011.6091765.
9
The utility of EEG, SSEP, and other neurophysiologic tools to guide neurocritical care.
Neurotherapeutics. 2012 Jan;9(1):24-36. doi: 10.1007/s13311-011-0101-x.
10
Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex.
Brain. 2012 Jan;135(Pt 1):259-75. doi: 10.1093/brain/awr303. Epub 2011 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验