Suppr超能文献

时频混合范数估计:具有非平稳源激活的稀疏 M/EEG 成像。

Time-frequency mixed-norm estimates: sparse M/EEG imaging with non-stationary source activations.

机构信息

Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI, Paris, France.

出版信息

Neuroimage. 2013 Apr 15;70:410-22. doi: 10.1016/j.neuroimage.2012.12.051. Epub 2013 Jan 4.

Abstract

Magnetoencephalography (MEG) and electroencephalography (EEG) allow functional brain imaging with high temporal resolution. While solving the inverse problem independently at every time point can give an image of the active brain at every millisecond, such a procedure does not capitalize on the temporal dynamics of the signal. Linear inverse methods (minimum-norm, dSPM, sLORETA, beamformers) typically assume that the signal is stationary: regularization parameter and data covariance are independent of time and the time varying signal-to-noise ratio (SNR). Other recently proposed non-linear inverse solvers promoting focal activations estimate the sources in both space and time while also assuming stationary sources during a time interval. However such a hypothesis holds only for short time intervals. To overcome this limitation, we propose time-frequency mixed-norm estimates (TF-MxNE), which use time-frequency analysis to regularize the ill-posed inverse problem. This method makes use of structured sparse priors defined in the time-frequency domain, offering more accurate estimates by capturing the non-stationary and transient nature of brain signals. State-of-the-art convex optimization procedures based on proximal operators are employed, allowing the derivation of a fast estimation algorithm. The accuracy of the TF-MxNE is compared with recently proposed inverse solvers with help of simulations and by analyzing publicly available MEG datasets.

摘要

脑磁图 (MEG) 和脑电图 (EEG) 允许以高时间分辨率进行功能性大脑成像。虽然在每个时间点独立求解逆问题可以给出每毫秒活跃大脑的图像,但这种方法并没有利用信号的时间动态。线性逆方法(最小范数、dSPM、sLORETA、波束形成器)通常假设信号是静止的:正则化参数和数据协方差与时间无关,并且时变信噪比 (SNR) 也与时间无关。其他最近提出的促进焦点激活的非线性逆求解器在估计空间和时间中的源时,同时也假设在一段时间内源是静止的。然而,这种假设仅适用于短时间间隔。为了克服这一限制,我们提出了时频混合范数估计 (TF-MxNE),它利用时频分析来正则化病态逆问题。该方法利用在时频域中定义的结构化稀疏先验,通过捕获脑信号的非平稳和瞬态特性,提供更准确的估计。使用基于近端算子的最先进凸优化程序来实现,允许快速推导出估计算法。借助模拟和分析公开可用的 MEG 数据集,将 TF-MxNE 的准确性与最近提出的逆求解器进行了比较。

相似文献

5
Multi-subject MEG/EEG source imaging with sparse multi-task regression.基于稀疏多任务回归的多模态脑磁图/脑电图源成像
Neuroimage. 2020 Oct 15;220:116847. doi: 10.1016/j.neuroimage.2020.116847. Epub 2020 May 11.
9
A distributed spatio-temporal EEG/MEG inverse solver.一种分布式时空脑电图/脑磁图逆解算器。
Neuroimage. 2009 Feb 1;44(3):932-46. doi: 10.1016/j.neuroimage.2008.05.063. Epub 2008 Jun 14.
10
A distributed spatio-temporal EEG/MEG inverse solver.一种分布式时空脑电图/脑磁图逆解算器。
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):26-34. doi: 10.1007/978-3-540-85988-8_4.

引用本文的文献

7
An F-ratio-based method for estimating the number of active sources in MEG.一种基于F比率估计脑磁图中活跃源数量的方法。
Front Hum Neurosci. 2023 Sep 14;17:1235192. doi: 10.3389/fnhum.2023.1235192. eCollection 2023.
9
Switching state-space modeling of neural signal dynamics.切换神经信号动力学的状态空间建模。
PLoS Comput Biol. 2023 Aug 28;19(8):e1011395. doi: 10.1371/journal.pcbi.1011395. eCollection 2023 Aug.

本文引用的文献

3
Wavelet-based localization of oscillatory sources from magnetoencephalography data.基于小波变换的脑磁图数据振荡源定位
IEEE Trans Biomed Eng. 2014 Aug;61(8):2350-64. doi: 10.1109/TBME.2012.2189883. Epub 2012 Mar 6.
4
A spatiotemporal dynamic distributed solution to the MEG inverse problem.一种时空动态分布式方法解决脑磁图逆问题。
Neuroimage. 2012 Nov 1;63(2):894-909. doi: 10.1016/j.neuroimage.2011.11.020. Epub 2011 Nov 30.
9
Large-scale EEG/MEG source localization with spatial flexibility.具有空间灵活性的大规模 EEG/MRI 源定位。
Neuroimage. 2011 Jan 15;54(2):851-9. doi: 10.1016/j.neuroimage.2010.09.003. Epub 2010 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验