Department of Chemical Engineering, Department of Molecular, Cell and Developmental Biology, and Materials Research Laboratory, University of California, Santa Barbara, CA 93106.
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15680-5. doi: 10.1073/pnas.1315015110. Epub 2013 Sep 6.
The adhesion of mussel foot proteins (Mfps) to a variety of specially engineered mineral and metal oxide surfaces has previously been investigated extensively, but the relevance of these studies to adhesion in biological environments remains unknown. Most solid surfaces exposed to seawater or physiological fluids become fouled by organic conditioning films and biofilms within minutes. Understanding the binding mechanisms of Mfps to organic films with known chemical and physical properties therefore is of considerable theoretical and practical interest. Using self-assembled monolayers (SAMs) on atomically smooth gold substrates and the surface forces apparatus, we explored the force-distance profiles and adhesion energies of three different Mfps, Mfp-1, Mfp-3, and Mfp-5, on (i) hydrophobic methyl (CH3)- and (ii) hydrophilic alcohol (OH)-terminated SAM surfaces between pH 3 and pH 7.5. At acidic pH, all three Mfps adhered strongly to the CH3-terminated SAM surfaces via hydrophobic interactions (range of adhesive interaction energy = -4 to -9 mJ/m(2)) but only weakly to the OH-terminated SAM surfaces through H- bonding (adhesive interaction energy ≤ -0.5 mJ/m(2)). 3, 4-Dihydroxyphenylalanine (Dopa) residues in Mfps mediate binding to both SAM surface types but do so through different interactions: typical bidentate H-bonding by Dopa is frustrated by the longer spacing of OH-SAMs; in contrast, on CH3-SAMs, Dopa in synergy with other nonpolar residues partitions to the hydrophobic surface. Asymmetry in the distribution of hydrophobic residues in intrinsically unstructured proteins, the distortion of bond geometry between H-bonding surfaces, and the manipulation of physisorbed binding lifetimes represent important concepts for the design of adhesive and nonfouling surfaces.
贻贝足蛋白(Mfps)对各种专门设计的矿物和金属氧化物表面的粘附性已经被广泛研究,但这些研究与生物环境中的粘附性的相关性尚不清楚。大多数暴露于海水或生理液中的固体表面在几分钟内就会被有机调理膜和生物膜污染。因此,了解 Mfps 与具有已知化学和物理性质的有机膜的结合机制具有相当大的理论和实际意义。使用原子级光滑金基底上的自组装单分子层(SAMs)和表面力仪,我们在 pH 值 3 到 7.5 之间研究了三种不同的 Mfps(Mfp-1、Mfp-3 和 Mfp-5)在(i)疏水性甲基(CH3)和(ii)亲水性醇(OH)终止的 SAM 表面上的力-距离曲线和粘附能。在酸性 pH 值下,所有三种 Mfps 都通过疏水相互作用(粘附相互作用能范围为-4 到-9 mJ/m2)强烈地粘附在 CH3 终止的 SAM 表面上,但通过氢键(粘附相互作用能≤-0.5 mJ/m2)仅弱地粘附在 OH 终止的 SAM 表面上。Mfps 中的 3,4-二羟基苯丙氨酸(Dopa)残基介导与两种 SAM 表面类型的结合,但通过不同的相互作用:Dopa 的典型双齿氢键受到 OH-SAMs 更长间距的阻碍;相反,在 CH3-SAMs 上,Dopa 与其他非极性残基协同作用分配到疏水面。在结构上无规卷曲的蛋白质中疏水性残基分布的不对称性、氢键表面之间键几何形状的扭曲以及物理吸附结合寿命的操纵代表了设计粘附性和非粘性表面的重要概念。