Doussau Adélaïde, Thiébaut Rodolphe, Paoletti Xavier
INSERM, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, F-33000 Bordeaux, France; CHU de Bordeaux, Pole de Santé Publique, F-33000 Bordeaux, France; Univ. Bordeaux, ISPED, CIC-EC7, F-33000 Bordeaux, France; INSERM, U900, F-75005 Paris, France.
Stat Med. 2013 Dec 30;32(30):5430-47. doi: 10.1002/sim.5960. Epub 2013 Sep 10.
Phase I oncology clinical trials are designed to identify the optimal dose that will be recommended for phase II trials. This dose is typically defined as the dose associated with a certain probability of severe toxicity during the first cycle of treatment, although toxicity is repeatedly measured over cycles on an ordinal scale. We propose a new adaptive dose-finding design using longitudinal measurements of ordinal toxic adverse events, with proportional odds mixed-effect models. Likelihood-based inference is implemented. The optimal dose is then the dose producing a target rate of severe toxicity per cycle. This model can also be used to identify cumulative or late toxicities. The performances of this approach were compared with those of the continual reassessment method in a simulation study. Operating characteristics were evaluated in terms of correct identification of the target dose, distribution of the doses allocated and power to detect trends in the risk of toxicities over time. This approach was also used to reanalyse data from a phase I oncology trial. Use of a proportional odds mixed-effect model appears to be feasible in phase I dose-finding trials, increases the ability of selecting the correct dose and provides a tool to detect cumulative effects.
I期肿瘤临床试验旨在确定将推荐用于II期试验的最佳剂量。该剂量通常定义为与治疗第一个周期中出现严重毒性的一定概率相关的剂量,尽管毒性会在多个周期中按序贯量表反复测量。我们提出了一种新的适应性剂量探索设计,使用序贯毒性不良事件的纵向测量,并结合比例优势混合效应模型。实施基于似然性的推断。然后,最佳剂量是每个周期产生目标严重毒性率的剂量。该模型还可用于识别累积或晚期毒性。在一项模拟研究中,将该方法的性能与连续重新评估方法的性能进行了比较。根据对目标剂量的正确识别、分配剂量的分布以及检测毒性风险随时间变化趋势的能力来评估操作特征。该方法还用于重新分析一项I期肿瘤试验的数据。在I期剂量探索试验中使用比例优势混合效应模型似乎是可行的,提高了选择正确剂量的能力,并提供了一种检测累积效应的工具。