Suppr超能文献

一种纳入多个治疗周期毒性数据的贝叶斯剂量探索设计。

A Bayesian dose-finding design incorporating toxicity data from multiple treatment cycles.

作者信息

Yin Jun, Qin Rui, Ezzalfani Monia, Sargent Daniel J, Mandrekar Sumithra J

机构信息

Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, U.S.A.

Biostatistics Department, Institut Gustave-Roussy, Villejuif, France.

出版信息

Stat Med. 2017 Jan 15;36(1):67-80. doi: 10.1002/sim.7134. Epub 2016 Sep 15.

Abstract

Phase I oncology trials are designed to identify a safe dose with an acceptable toxicity profile. The dose is typically determined based on the probability of severe toxicity observed during the first treatment cycle, although patients continue to receive treatment for multiple cycles. In addition, the toxicity data from multiple types and grades are typically summarized into a single binary outcome of dose-limiting toxicity. A novel endpoint, the total toxicity profile, was previously developed to account for the multiple toxicity types and grades. In this work, we propose to account for longitudinal repeated measures of total toxicity profile over multiple treatment cycles, accounting for cumulative toxicity during dosing-finding. A linear mixed model was utilized in the Bayesian framework, with addition of Bayesian risk functions for decision-making in dose assignment. The performance of this design is evaluated using simulation studies and compared with the previously proposed quasi-likelihood continual reassessment method (QLCRM) design. Twelve clinical scenarios incorporating four different locations of maximum tolerated dose and three different time trends (decreasing, increasing, and no effect) were investigated. The proposed repeated measures design was comparable with the QLCRM when only cycle 1 data were utilized in dose-finding; however, it demonstrated an improvement over the QLCRM when data from multiple cycles were used across all scenarios. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

I期肿瘤试验旨在确定具有可接受毒性特征的安全剂量。尽管患者会接受多个周期的治疗,但剂量通常是根据第一个治疗周期中观察到的严重毒性概率来确定的。此外,来自多种类型和级别的毒性数据通常会汇总为剂量限制毒性这一单一的二元结果。之前开发了一种新的终点指标——总毒性特征,以考虑多种毒性类型和级别。在这项工作中,我们建议考虑多个治疗周期中总毒性特征的纵向重复测量,同时考虑剂量探索过程中的累积毒性。在贝叶斯框架下使用了线性混合模型,并添加了贝叶斯风险函数用于剂量分配决策。通过模拟研究评估了该设计的性能,并与之前提出的拟似然连续重新评估方法(QLCRM)设计进行了比较。研究了包含四种不同最大耐受剂量位置和三种不同时间趋势(下降、上升和无影响)的12种临床情况。当仅在剂量探索中使用第1周期的数据时,所提出的重复测量设计与QLCRM相当;然而,当在所有情况下使用多个周期的数据时,它显示出优于QLCRM的性能。版权所有© 2016约翰·威利父子有限公司。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c42/5138146/d42ecd58304c/nihms817895f1.jpg

相似文献

7
Dose finding with continuous outcome in phase I oncology trials.肿瘤学I期试验中连续型结局的剂量探索
Pharm Stat. 2015 Mar-Apr;14(2):102-7. doi: 10.1002/pst.1662. Epub 2014 Nov 19.

引用本文的文献

6
Innovative trial design in precision oncology.精准肿瘤学中的创新试验设计。
Semin Cancer Biol. 2022 Sep;84:284-292. doi: 10.1016/j.semcancer.2020.09.006. Epub 2020 Oct 3.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验