Suppr超能文献

利用牛奶中红外反射光谱和其他常用预测因子通过人工神经网络预测加拿大荷斯坦奶牛的干物质采食量。

Predicting dry matter intake in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks.

机构信息

Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.

出版信息

J Dairy Sci. 2022 Oct;105(10):8257-8271. doi: 10.3168/jds.2021-21297. Epub 2022 Aug 31.

Abstract

Dry matter intake (DMI) is a fundamental component of the animal's feed efficiency, but measuring DMI of individual cows is expensive. Mid-infrared reflectance spectroscopy (MIRS) on milk samples could be an inexpensive alternative to predict DMI. The objectives of this study were (1) to assess if milk MIRS data could improve DMI predictions of Canadian Holstein cows using artificial neural networks (ANN); (2) to investigate the ability of different ANN architectures to predict unobserved DMI; and (3) to validate the robustness of developed prediction models. A total of 7,398 milk samples from 509 dairy cows distributed over Canada, Denmark, and the United States were analyzed. Data from Denmark and the United States were used to increase the training data size and variability to improve the generalization of the prediction models over the lactation. For each milk spectra record, the corresponding weekly average DMI (kg/d), test-day milk yield (MY, kg/d), fat yield (FY, g/d), and protein yield (PY, g/d), metabolic body weight (MBW), age at calving, year of calving, season of calving, days in milk, lactation number, country, and herd were available. The weekly average DMI was predicted with various ANN architectures using 7 predictor sets, which were created by different combinations MY, FY, PY, MBW, and MIRS data. All predictor sets also included age of calving and days in milk. In addition, the classification effects of season of calving, country, and lactation number were included in all models. The explored ANN architectures consisted of 3 training algorithms (Bayesian regularization, Levenberg-Marquardt, and scaled conjugate gradient), 2 types of activation functions (hyperbolic tangent and linear), and from 1 to 10 neurons in hidden layers). In addition, partial least squares regression was also applied to predict the DMI. Models were compared using cross-validation based on leaving out 10% of records (validation A) and leaving out 10% of cows (validation B). Superior fitting statistics of models comprising MIRS information compared with the models fitting milk, fat and protein yields suggest that other unknown milk components may help explain variation in weekly average DMI. For instance, using MY, FY, PY, and MBW as predictor variables produced a predictive accuracy (r) ranging from 0.510 to 0.652 across ANN models and validation sets. Using MIRS together with MY, FY, PY, and MBW as predictors resulted in improved fitting (r = 0.679-0.777). Including MIRS data improved the weekly average DMI prediction of Canadian Holstein cows, but it seems that MIRS predicts DMI mostly through its association with milk production traits and its utility to estimate a measure of feed efficiency that accounts for the level of production, such as residual feed intake, might be limited and needs further investigation. The better predictive ability of nonlinear ANN compared with linear ANN and partial least squares regression indicated possible nonlinear relationships between weekly average DMI and the predictor variables. In general, ANN using Bayesian regularization and scaled conjugate gradient training algorithms yielded slightly better weekly average DMI predictions compared with ANN using the Levenberg-Marquardt training algorithm.

摘要

干物质采食量(DMI)是动物饲料效率的基本组成部分,但测量个体奶牛的 DMI 成本昂贵。牛奶中中红外反射光谱(MIRS)分析可能是一种廉价的替代方法,可以预测 DMI。本研究的目的是:(1)评估人工神经网络(ANN)是否可以使用牛奶 MIRS 数据来提高加拿大荷斯坦奶牛的 DMI 预测值;(2)研究不同 ANN 结构预测未观察到的 DMI 的能力;(3)验证所开发预测模型的稳健性。分析了来自加拿大、丹麦和美国的 509 头奶牛的 7398 个牛奶样本。来自丹麦和美国的数据用于增加训练数据的大小和变异性,以提高模型在泌乳期的泛化能力。对于每个牛奶光谱记录,都有相应的每周平均 DMI(kg/d)、测试日牛奶产量(MY,kg/d)、脂肪产量(FY,g/d)、蛋白质产量(PY,g/d)、代谢体重(MBW)、产犊年龄、产犊年份、产犊季节、泌乳天数、泌乳次数、国家和牛群。使用各种 ANN 结构,通过不同的 MY、FY、PY、MBW 和 MIRS 数据组合创建了 7 个预测集,对每周平均 DMI 进行了预测。所有预测集都包含产犊年龄和泌乳天数。此外,在所有模型中都包含了产犊季节、国家和泌乳次数的分类效果。探索的 ANN 结构包括 3 种训练算法(贝叶斯正则化、Levenberg-Marquardt 和比例共轭梯度)、2 种激活函数(双曲正切和线性),以及 1 到 10 个隐藏层神经元。此外,还应用偏最小二乘回归来预测 DMI。使用基于留出 10%记录的交叉验证(验证 A)和留出 10%奶牛的交叉验证(验证 B)来比较模型。包含 MIRS 信息的模型拟合统计数据优于仅拟合牛奶、脂肪和蛋白质产量的模型,这表明其他未知的牛奶成分可能有助于解释每周平均 DMI 的变化。例如,使用 MY、FY、PY 和 MBW 作为预测变量,在 ANN 模型和验证集中,预测准确性(r)的范围为 0.510 到 0.652。使用 MIRS 与 MY、FY、PY 和 MBW 一起作为预测因子,拟合度得到改善(r=0.679-0.777)。包含 MIRS 数据提高了加拿大荷斯坦奶牛的每周平均 DMI 预测值,但似乎 MIRS 主要通过其与牛奶生产性状的关联来预测 DMI,其用于估计反映生产水平的饲料效率的度量(如剩余饲料摄入量)的效用可能有限,需要进一步研究。与线性 ANN 和偏最小二乘回归相比,非线性 ANN 的更好预测能力表明每周平均 DMI 与预测变量之间可能存在非线性关系。一般来说,与使用 Levenberg-Marquardt 训练算法的 ANN 相比,使用贝叶斯正则化和比例共轭梯度训练算法的 ANN 对每周平均 DMI 的预测稍微好一些。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验