Suppr超能文献

基于变量选择的贝叶斯神经网络用于预测基因型值。

Bayesian neural networks with variable selection for prediction of genotypic values.

机构信息

SNN Machine Learning Group, Biophysics Department, Donders Institute for Brain Cognition and Behavior, Radboud University, 6525 AJ, Nijmegen, The Netherlands.

Animal Breeding and Genomics, Wageningen University and Research, 6700 AH, Wageningen, The Netherlands.

出版信息

Genet Sel Evol. 2020 May 15;52(1):26. doi: 10.1186/s12711-020-00544-8.

Abstract

BACKGROUND

Estimating the genetic component of a complex phenotype is a complicated problem, mainly because there are many allele effects to estimate from a limited number of phenotypes. In spite of this difficulty, linear methods with variable selection have been able to give good predictions of additive effects of individuals. However, prediction of non-additive genetic effects is challenging with the usual prediction methods. In machine learning, non-additive relations between inputs can be modeled with neural networks. We developed a novel method (NetSparse) that uses Bayesian neural networks with variable selection for the prediction of genotypic values of individuals, including non-additive genetic effects.

RESULTS

We simulated several populations with different phenotypic models and compared NetSparse to genomic best linear unbiased prediction (GBLUP), BayesB, their dominance variants, and an additive by additive method. We found that when the number of QTL was relatively small (10 or 100), NetSparse had 2 to 28 percentage points higher accuracy than the reference methods. For scenarios that included dominance or epistatic effects, NetSparse had 0.0 to 3.9 percentage points higher accuracy for predicting phenotypes than the reference methods, except in scenarios with extreme overdominance, for which reference methods that explicitly model dominance had 6 percentage points higher accuracy than NetSparse.

CONCLUSIONS

Bayesian neural networks with variable selection are promising for prediction of the genetic component of complex traits in animal breeding, and their performance is robust across different genetic models. However, their large computational costs can hinder their use in practice.

摘要

背景

估计复杂表型的遗传成分是一个复杂的问题,主要是因为从有限数量的表型中需要估计许多等位基因的效应。尽管存在这种困难,但具有变量选择的线性方法已经能够很好地预测个体的加性效应。然而,通常的预测方法对于非加性遗传效应的预测具有挑战性。在机器学习中,可以使用神经网络来模拟输入之间的非加性关系。我们开发了一种新的方法(NetSparse),该方法使用具有变量选择的贝叶斯神经网络来预测个体的基因型值,包括非加性遗传效应。

结果

我们模拟了几个具有不同表型模型的群体,并将 NetSparse 与基因组最佳线性无偏预测(GBLUP)、BayesB、它们的显性变体以及加性加性方法进行了比较。我们发现,当 QTL 的数量相对较少(10 或 100)时,NetSparse 的准确性比参考方法高 2 到 28 个百分点。对于包括显性或上位性效应的情况,NetSparse 预测表型的准确性比参考方法高 0.0 到 3.9 个百分点,除了在极端超显性的情况下,明确模拟显性的参考方法的准确性比 NetSparse 高 6 个百分点。

结论

具有变量选择的贝叶斯神经网络是动物育种中预测复杂性状遗传成分的有前途的方法,其性能在不同的遗传模型中具有稳健性。然而,它们的高计算成本可能会阻碍它们在实践中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e4d/7227313/65555db6719d/12711_2020_544_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验