Suppr超能文献

可视化不确定二维标量场中梯度的可变性。

Visualizing the variability of gradients in uncertain 2D scalar fields.

机构信息

Technische Universität München, Garching bei München.

出版信息

IEEE Trans Vis Comput Graph. 2013 Nov;19(11):1948-61. doi: 10.1109/TVCG.2013.92.

Abstract

In uncertain scalar fields where data values vary with a certain probability, the strength of this variability indicates the confidence in the data. It does not, however, allow inferring on the effect of uncertainty on differential quantities such as the gradient, which depend on the variability of the rate of change of the data. Analyzing the variability of gradients is nonetheless more complicated, since, unlike scalars, gradients vary in both strength and direction. This requires initially the mathematical derivation of their respective value ranges, and then the development of effective analysis techniques for these ranges. This paper takes a first step into this direction: Based on the stochastic modeling of uncertainty via multivariate random variables, we start by deriving uncertainty parameters, such as the mean and the covariance matrix, for gradients in uncertain discrete scalar fields. We do not make any assumption about the distribution of the random variables. Then, for the first time to our best knowledge, we develop a mathematical framework for computing confidence intervals for both the gradient orientation and the strength of the derivative in any prescribed direction, for instance, the mean gradient direction. While this framework generalizes to 3D uncertain scalar fields, we concentrate on the visualization of the resulting intervals in 2D fields. We propose a novel color diffusion scheme to visualize both the absolute variability of the derivative strength and its magnitude relative to the mean values. A special family of circular glyphs is introduced to convey the uncertainty in gradient orientation. For a number of synthetic and real-world data sets, we demonstrate the use of our approach for analyzing the stability of certain features in uncertain 2D scalar fields, with respect to both local derivatives and feature orientation.

摘要

在数据值随一定概率变化的不确定标量场中,这种变化的强度表示了对数据的置信度。然而,它不能推断不确定性对微分量(如梯度)的影响,梯度取决于数据变化率的变化程度。分析梯度的变化性仍然更为复杂,因为与标量不同,梯度在强度和方向上都有所变化。这需要首先推导出它们各自的数值范围的数学推导,然后为这些范围开发有效的分析技术。本文朝着这个方向迈出了第一步:基于通过多元随机变量对不确定性的随机建模,我们首先推导出不确定离散标量场中梯度的不确定性参数,如平均值和协方差矩阵。我们不对随机变量的分布做任何假设。然后,据我们所知,这是首次为任何给定方向(例如平均梯度方向)的梯度方向和导数强度开发计算置信区间的数学框架。虽然这个框架可以推广到 3D 不确定标量场,但我们专注于在 2D 场中可视化生成的区间。我们提出了一种新颖的颜色扩散方案来可视化导数强度的绝对变化及其相对于平均值的大小。引入了一组特殊的圆形符号来传达梯度方向的不确定性。对于一些合成和真实数据集,我们演示了我们的方法在分析不确定二维标量场中某些特征的稳定性方面的应用,包括局部导数和特征方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验