Department of Computer Science, Aberystwyth University, Aberystwyth, UK; Faculty of Information and Control Engineering, Shenyang Jianzhu University, Shenyang, China.
Comput Biol Med. 2013 Oct;43(10):1530-44. doi: 10.1016/j.compbiomed.2013.07.027. Epub 2013 Aug 6.
This paper proposes an unsupervised tumour segmentation approach for PET data. The method computes the volumes of interest (VOIs) with sub-voxel precision by considering the limited image resolution and partial volume effects. First, an improved anisotropic diffusion filter is used to remove image noise. A hierarchical local and global intensity active surface modelling scheme is then applied to segment VOIs, followed by an alpha matting step to further refine the segmentation boundary. The proposed method is validated on real PET images of head-and-neck cancer patients with ground truth provided by human experts, as well as custom-designed phantom PET images with objective ground truth. Experimental results show that our method outperforms previous automatic approaches in terms of segmentation accuracy.
本文提出了一种用于正电子发射断层扫描(PET)数据的无监督肿瘤分割方法。该方法通过考虑有限的图像分辨率和部分容积效应,以亚像素精度计算感兴趣区域(VOI)的体积。首先,使用改进的各向异性扩散滤波器去除图像噪声。然后应用分层局部和全局强度主动表面建模方案来分割 VOI,接着进行 alpha 遮罩步骤以进一步细化分割边界。该方法在头颈部癌症患者的真实 PET 图像上进行了验证,其真实边界由人类专家提供,同时也在具有客观真实边界的定制设计的 PET 图像上进行了验证。实验结果表明,与先前的自动方法相比,我们的方法在分割准确性方面表现更好。