Suppr超能文献

Unsupervised tumour segmentation in PET based on local and global intensity fitting active surface and alpha matting.

作者信息

Zeng Ziming, Shepherd Tony, Zwiggelaar Reyer

机构信息

Faculty of Information and Control Engineering, Shenyang Jianzhu University, Shenyang, China.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2339-42. doi: 10.1109/EMBC.2012.6346432.

Abstract

This paper proposes an unsupervised tumour segmentation scheme for PET data. The method computes the volume of interests (VOIs) with subpixel precision by considering the limited resolution and partial volume effect. Firstly, it uses local and global intensity active surface modelling to segment VOIs, then an alpha matting method is used to eliminate false negative classification and refine the segmentation results. We have validated our method on real PET images of head-and-neck cancer patients as well as images of a custom designed PET phantom. Experiments show that our method can generate more accurate segmentation results compared with alternative approaches.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验