Suppr超能文献

一种用于PET图像分割的图论方法。

A graph-theoretic approach for segmentation of PET images.

作者信息

Bağci Ulaş, Yao Jianhua, Caban Jesus, Turkbey Evrim, Aras Omer, Mollura Daniel J

机构信息

Center for Infectious Disease Imaging, Department of Radiology and Imaging Sciences, National Institutes of Health, MD, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:8479-82. doi: 10.1109/IEMBS.2011.6092092.

Abstract

Segmentation of positron emission tomography (PET) images is an important objective because accurate measurement of signal from radio-tracer activity in a region of interest is critical for disease treatment and diagnosis. In this study, we present the use of a graph based method for providing robust, accurate, and reliable segmentation of functional volumes on PET images from standardized uptake values (SUVs). We validated the success of the segmentation method on different PET phantoms including ground truth CT simulation, and compared it to two well-known threshold based segmentation methods. Furthermore, we assessed intra-and inter-observer variation in delineation accuracy as well as reproducibility of delineations using real clinical data. Experimental results indicate that the presented segmentation method is superior to the commonly used threshold based methods in terms of accuracy, robustness, repeatability, and computational efficiency.

摘要

正电子发射断层扫描(PET)图像的分割是一个重要目标,因为在感兴趣区域准确测量放射性示踪剂活性的信号对于疾病治疗和诊断至关重要。在本研究中,我们展示了一种基于图的方法,用于对PET图像上基于标准化摄取值(SUVs)的功能体积进行稳健、准确且可靠的分割。我们在包括真实CT模拟在内的不同PET体模上验证了分割方法的成功,并将其与两种著名的基于阈值的分割方法进行了比较。此外,我们使用真实临床数据评估了观察者内部和观察者之间在轮廓描绘准确性以及描绘可重复性方面的差异。实验结果表明,所提出的分割方法在准确性、稳健性、可重复性和计算效率方面优于常用的基于阈值的方法。

相似文献

1
A graph-theoretic approach for segmentation of PET images.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:8479-82. doi: 10.1109/IEMBS.2011.6092092.
4
Random Walk and Graph Cut for Co-Segmentation of Lung Tumor on PET-CT Images.
IEEE Trans Image Process. 2015 Dec;24(12):5854-67. doi: 10.1109/TIP.2015.2488902. Epub 2015 Oct 8.
5
Contourlet-based active contour model for PET image segmentation.
Med Phys. 2013 Aug;40(8):082507. doi: 10.1118/1.4816296.
6
PET functional volume delineation: a robustness and repeatability study.
Eur J Nucl Med Mol Imaging. 2011 Apr;38(4):663-72. doi: 10.1007/s00259-010-1688-6. Epub 2011 Jan 12.
7
Lung tumor segmentation in PET images using graph cuts.
Comput Methods Programs Biomed. 2013 Mar;109(3):260-8. doi: 10.1016/j.cmpb.2012.10.009. Epub 2012 Nov 10.
9
Simultaneous estimation and segmentation from projection data in dynamic PET.
Med Phys. 2019 Mar;46(3):1245-1259. doi: 10.1002/mp.13364. Epub 2019 Feb 4.

引用本文的文献

1
Advances in Medical Image Segmentation: A Comprehensive Review of Traditional, Deep Learning and Hybrid Approaches.
Bioengineering (Basel). 2024 Oct 16;11(10):1034. doi: 10.3390/bioengineering11101034.
2
Heart and bladder detection and segmentation on FDG PET/CT by deep learning.
BMC Med Imaging. 2022 Mar 30;22(1):58. doi: 10.1186/s12880-022-00785-7.
3
Radiomics in Oncological PET/CT: a Methodological Overview.
Nucl Med Mol Imaging. 2019 Feb;53(1):14-29. doi: 10.1007/s13139-019-00571-4. Epub 2019 Jan 15.
4
Automatic PET cervical tumor segmentation by combining deep learning and anatomic prior.
Phys Med Biol. 2019 Apr 12;64(8):085019. doi: 10.1088/1361-6560/ab0b64.
5
Accurate segmenting of cervical tumors in PET imaging based on similarity between adjacent slices.
Comput Biol Med. 2018 Jun 1;97:30-36. doi: 10.1016/j.compbiomed.2018.04.009. Epub 2018 Apr 16.
6
Joint solution for PET image segmentation, denoising, and partial volume correction.
Med Image Anal. 2018 May;46:229-243. doi: 10.1016/j.media.2018.03.007. Epub 2018 Mar 28.
7
Simultaneous Tumor Segmentation, Image Restoration, and Blur Kernel Estimation in PET Using Multiple Regularizations.
Comput Vis Image Underst. 2017 Feb;155:173-194. doi: 10.1016/j.cviu.2016.10.002. Epub 2016 Oct 6.
8
Automatic liver segmentation on Computed Tomography using random walkers for treatment planning.
EXCLI J. 2016 Aug 10;15:500-517. doi: 10.17179/excli2016-473. eCollection 2016.
10
An enhanced random walk algorithm for delineation of head and neck cancers in PET studies.
Med Biol Eng Comput. 2017 Jun;55(6):897-908. doi: 10.1007/s11517-016-1571-0. Epub 2016 Sep 16.

本文引用的文献

1
A random walk procedure for texture discrimination.
IEEE Trans Pattern Anal Mach Intell. 1979 Mar;1(3):272-80. doi: 10.1109/tpami.1979.4766923.
2
Fast random walker with priors using precomputation for interactive medical image segmentation.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):9-16. doi: 10.1007/978-3-642-15711-0_2.
4
A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET.
IEEE Trans Med Imaging. 2009 Jun;28(6):881-93. doi: 10.1109/TMI.2008.2012036. Epub 2009 Jan 13.
7
Random walks for image segmentation.
IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1768-83. doi: 10.1109/TPAMI.2006.233.
8
Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding.
Cancer. 1997 Dec 15;80(12 Suppl):2505-9. doi: 10.1002/(sici)1097-0142(19971215)80:12+<2505::aid-cncr24>3.3.co;2-b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验