Suppr超能文献

果蝇中无翅/Wnt 信号通路:模式与途径。

Wingless/Wnt signaling in Drosophila: the pattern and the pathway.

机构信息

Department of Biology, Duke University, Durham, North Carolina.

出版信息

Mol Reprod Dev. 2013 Nov;80(11):882-94. doi: 10.1002/mrd.22228. Epub 2013 Sep 18.

Abstract

Wnt signaling generates pattern in all animal embryos, from flies and worms to humans, and promotes the undifferentiated, proliferative state critical for stem cells in adult tissues. Inappropriate Wnt pathway activation is the major cause of colorectal cancers, a leading cause of cancer death in humans. Although this pathway has been studied extensively for years, large gaps remain in our understanding of how it switches on and off, and how its activation changes cellular behaviors. Much of what is known about the pathway comes from genetic studies in Drosophila, where a single Wnt molecule, encoded by wingless (wg), directs an array of cell-fate decisions similar to those made by the combined activities of all 19 Wnt family members in vertebrates. Although Wg specifies fate in many tissues, including the brain, limbs, and major organs, the fly embryonic epidermis has proven to be a very powerful system for dissecting pathway activity. It is a simple, accessible tissue, with a pattern that is highly sensitive to small changes in Wg pathway activity. This review discusses what we have learned about Wnt signaling from studying mutations that disrupt epidermal pattern in the fly embryo, highlights recent advances and controversies in the field, and sets these issues in the context of questions that remain about how this essential signaling pathway functions.

摘要

Wnt 信号在所有动物胚胎中产生模式,从苍蝇和蠕虫到人,并促进未分化、增殖状态,这对成人组织中的干细胞至关重要。Wnt 途径的异常激活是结直肠癌的主要原因,结直肠癌是人类癌症死亡的主要原因。尽管多年来人们对该途径进行了广泛研究,但我们对其如何开启和关闭以及其激活如何改变细胞行为仍存在很大的理解差距。该途径的大部分知识来自于果蝇的遗传研究,在果蝇中,单个 Wnt 分子,由无翅(wg)编码,指导一系列类似于脊椎动物中所有 19 个 Wnt 家族成员的组合活性所做出的细胞命运决定。尽管 Wg 在许多组织中指定命运,包括大脑、四肢和主要器官,但蝇胚胎表皮已被证明是一个非常强大的系统,可以剖析途径活性。它是一种简单、易于接近的组织,其模式对 Wg 途径活性的微小变化高度敏感。这篇综述讨论了我们从研究破坏蝇胚胎表皮模式的突变中了解到的 Wnt 信号,突出了该领域的最新进展和争议,并将这些问题置于有关这个基本信号途径如何发挥作用的问题背景下。

相似文献

1
Wingless/Wnt signaling in Drosophila: the pattern and the pathway.
Mol Reprod Dev. 2013 Nov;80(11):882-94. doi: 10.1002/mrd.22228. Epub 2013 Sep 18.
2
The HMG-box transcription factor SoxNeuro acts with Tcf to control Wg/Wnt signaling activity.
Development. 2007 Mar;134(5):989-97. doi: 10.1242/dev.02796. Epub 2007 Jan 31.
3
RacGap50C negatively regulates wingless pathway activity during Drosophila embryonic development.
Genetics. 2005 Apr;169(4):2075-86. doi: 10.1534/genetics.104.039735. Epub 2005 Feb 3.
4
Cellular mechanisms of wingless/Wnt signal transduction.
Curr Top Dev Biol. 1999;43:153-90. doi: 10.1016/s0070-2153(08)60381-6.
5
DWnt-4 and Wingless have distinct activities in the Drosophila dorsal epidermis.
Dev Genes Evol. 2000 Mar;210(3):111-9. doi: 10.1007/s004270050017.
6
Non-equivalent roles of Drosophila Frizzled and Dfrizzled2 in embryonic wingless signal transduction.
Curr Biol. 2000 Sep 21;10(18):1127-30. doi: 10.1016/s0960-9822(00)00697-7.
7
The Yin-Yang of TCF/beta-catenin signaling.
Adv Cancer Res. 2000;77:1-24. doi: 10.1016/s0065-230x(08)60783-6.
9
Hipk proteins dually regulate Wnt/Wingless signal transduction.
Fly (Austin). 2012 Apr-Jun;6(2):126-31. doi: 10.4161/fly.20143. Epub 2012 Apr 1.
10
Wnt/Wingless signaling in Drosophila.
Cold Spring Harb Perspect Biol. 2012 Jun 1;4(6):a007930. doi: 10.1101/cshperspect.a007930.

引用本文的文献

1
Werner syndrome exonuclease promotes gut regeneration and causes age-associated gut hyperplasia in Drosophila.
PLoS Biol. 2025 Apr 22;23(4):e3003121. doi: 10.1371/journal.pbio.3003121. eCollection 2025 Apr.
2
Wnt target gene activation requires β-catenin separation into biomolecular condensates.
PLoS Biol. 2024 Sep 24;22(9):e3002368. doi: 10.1371/journal.pbio.3002368. eCollection 2024 Sep.
3
Nicotinamide Riboside Promotes the Proliferation of Endogenous Neural Stem Cells to Repair Spinal Cord Injury.
Stem Cell Rev Rep. 2024 Oct;20(7):1854-1868. doi: 10.1007/s12015-024-10747-x. Epub 2024 Jun 28.
4
What can the common fruit fly teach us about stroke?: lessons learned from the hypoxic tolerant .
Front Cell Neurosci. 2024 Mar 22;18:1347980. doi: 10.3389/fncel.2024.1347980. eCollection 2024.
5
Mitochondrial leak metabolism induces the Spemann-Mangold Organizer via Hif-1α in Xenopus.
Dev Cell. 2023 Nov 20;58(22):2597-2613.e4. doi: 10.1016/j.devcel.2023.08.015. Epub 2023 Sep 5.
6
Spatial and temporal regulation of Wnt signaling pathway members in the development of butterfly wing patterns.
Sci Adv. 2023 Jul 28;9(30):eadg3877. doi: 10.1126/sciadv.adg3877. Epub 2023 Jul 26.
7
A vacuum-actuated soft robot inspired by Drosophila larvae to study kinetics of crawling behaviour.
PLoS One. 2023 Apr 5;18(4):e0283316. doi: 10.1371/journal.pone.0283316. eCollection 2023.
8
Newt regeneration genes regulate Wingless signaling to restore patterning in eye.
iScience. 2021 Sep 24;24(10):103166. doi: 10.1016/j.isci.2021.103166. eCollection 2021 Oct 22.
10
Lithium as a possible therapeutic strategy for Cornelia de Lange syndrome.
Cell Death Discov. 2021 Feb 17;7(1):34. doi: 10.1038/s41420-021-00414-2.

本文引用的文献

4
Wnt secretion and gradient formation.
Int J Mol Sci. 2013 Mar 1;14(3):5130-45. doi: 10.3390/ijms14035130.
5
Molecular signatures of G-protein-coupled receptors.
Nature. 2013 Feb 14;494(7436):185-94. doi: 10.1038/nature11896.
6
Celebrating 30 years of Wnt signaling.
Sci Signal. 2012 Dec 11;5(254):mr2. doi: 10.1126/scisignal.2003714.
7
Kinetic responses of β-catenin specify the sites of Wnt control.
Science. 2012 Dec 7;338(6112):1337-40. doi: 10.1126/science.1228734. Epub 2012 Nov 8.
8
FlyBase: improvements to the bibliography.
Nucleic Acids Res. 2013 Jan;41(Database issue):D751-7. doi: 10.1093/nar/gks1024. Epub 2012 Nov 3.
9
Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex.
Cell. 2012 Jun 8;149(6):1245-56. doi: 10.1016/j.cell.2012.05.002.
10
Structural basis of Wnt recognition by Frizzled.
Science. 2012 Jul 6;337(6090):59-64. doi: 10.1126/science.1222879. Epub 2012 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验