Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA, Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA and Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
Nucleic Acids Res. 2013 Dec;41(22):10215-27. doi: 10.1093/nar/gkt817. Epub 2013 Sep 14.
The RecQ-like DNA helicase family is essential for the maintenance of genome stability in all organisms. Sgs1, a member of this family in Saccharomyces cerevisiae, regulates early and late steps of double-strand break repair by homologous recombination. Using nuclear magnetic resonance spectroscopy, we show that the N-terminal 125 residues of Sgs1 are disordered and contain a transient α-helix that extends from residue 25 to 38. Based on the residue-specific knowledge of transient secondary structure, we designed proline mutations to disrupt this α-helix and observed hypersensitivity to DNA damaging agents and increased frequency of genome rearrangements. In vitro binding assays show that the defects of the proline mutants are the result of impaired binding of Top3 and Rmi1 to Sgs1. Extending mutagenesis N-terminally revealed a second functionally critical region that spans residues 9-17. Depending on the position of the proline substitution in the helix functional impairment of Sgs1 function varied, gradually increasing from the C- to the N-terminus. The multiscale approach we used to interrogate structure/function relationships in the long disordered N-terminal segment of Sgs1 allowed us to precisely define a functionally critical region and should be generally applicable to other disordered proteins.
RecQ 样 DNA 解旋酶家族对于所有生物的基因组稳定性的维持都是必不可少的。酿酒酵母中该家族的成员 Sgs1 通过同源重组调节双链断裂修复的早期和晚期步骤。使用核磁共振波谱法,我们表明 Sgs1 的 N 端 125 个残基是无规卷曲的,并且包含一个从残基 25 到 38 的瞬态α-螺旋。基于瞬态二级结构的残基特异性知识,我们设计了脯氨酸突变来破坏该α-螺旋,并观察到对 DNA 损伤剂的敏感性增加和基因组重排频率增加。体外结合实验表明,脯氨酸突变体的缺陷是由于 Top3 和 Rmi1 与 Sgs1 结合能力受损所致。N 端延伸诱变显示第二个功能关键区域跨越残基 9-17。根据螺旋中脯氨酸取代的位置,Sgs1 功能的损伤逐渐从 C 端到 N 端增加。我们用于在 Sgs1 的长无规 N 端片段中探究结构/功能关系的多尺度方法使我们能够精确地定义一个功能关键区域,并且应该普遍适用于其他无规蛋白。