Suppr超能文献

使用D-最优混合设计通过分散聚合优化新型隐形聚乳酸基纳米颗粒的制备

Optimization of the fabrication of novel stealth PLA-based nanoparticles by dispersion polymerization using D-optimal mixture design.

作者信息

Adesina Simeon K, Wight Scott A, Akala Emmanuel O

机构信息

Department of Pharmaceutical Sciences, Center for Drug Research and Development (CDRD), Howard University , Washington DC , USA and.

出版信息

Drug Dev Ind Pharm. 2014 Nov;40(11):1547-56. doi: 10.3109/03639045.2013.838578. Epub 2013 Sep 23.

Abstract

PURPOSE

Nanoparticle size is important in drug delivery. Clearance of nanoparticles by cells of the reticuloendothelial system has been reported to increase with increase in particle size. Further, nanoparticles should be small enough to avoid lung or spleen filtering effects. Endocytosis and accumulation in tumor tissue by the enhanced permeability and retention effect are also processes that are influenced by particle size. We present the results of studies designed to optimize cross-linked biodegradable stealth polymeric nanoparticles fabricated by dispersion polymerization.

METHODS

Nanoparticles were fabricated using different amounts of macromonomer, initiators, crosslinking agent and stabilizer in a dioxane/DMSO/water solvent system. Confirmation of nanoparticle formation was by scanning electron microscopy (SEM). Particle size was measured by dynamic light scattering (DLS). D-optimal mixture statistical experimental design was used for the experimental runs, followed by model generation (Scheffe polynomial) and optimization with the aid of a computer software. Model verification was done by comparing particle size data of some suggested solutions to the predicted particle sizes.

RESULTS AND CONCLUSION

Data showed that average particle sizes follow the same trend as predicted by the model. Negative terms in the model corresponding to the cross-linking agent and stabilizer indicate the important factors for minimizing particle size.

摘要

目的

纳米颗粒大小在药物递送中至关重要。据报道,随着颗粒大小增加,网状内皮系统细胞对纳米颗粒的清除作用增强。此外,纳米颗粒应足够小以避免肺部或脾脏的过滤效应。通过增强的渗透和滞留效应实现的内吞作用以及在肿瘤组织中的积累也是受颗粒大小影响的过程。我们展示了旨在优化通过分散聚合制备的交联可生物降解隐形聚合物纳米颗粒的研究结果。

方法

在二氧六环/二甲基亚砜/水溶剂体系中,使用不同量的大分子单体、引发剂、交联剂和稳定剂制备纳米颗粒。通过扫描电子显微镜(SEM)确认纳米颗粒的形成。通过动态光散射(DLS)测量颗粒大小。实验运行采用D-最优混合统计实验设计,随后生成模型(谢弗多项式)并借助计算机软件进行优化。通过将一些建议溶液的颗粒大小数据与预测颗粒大小进行比较来进行模型验证。

结果与结论

数据表明平均颗粒大小与模型预测的趋势相同。模型中与交联剂和稳定剂对应的负项表明了使颗粒大小最小化的重要因素。

相似文献

1
Optimization of the fabrication of novel stealth PLA-based nanoparticles by dispersion polymerization using D-optimal mixture design.
Drug Dev Ind Pharm. 2014 Nov;40(11):1547-56. doi: 10.3109/03639045.2013.838578. Epub 2013 Sep 23.
3
Computer Optimization of Biodegradable Nanoparticles Fabricated by Dispersion Polymerization.
Int J Environ Res Public Health. 2015 Dec 22;13(1):ijerph13010047. doi: 10.3390/ijerph13010047.
5
Strategies to control the particle size distribution of poly-epsilon-caprolactone nanoparticles for pharmaceutical applications.
J Colloid Interface Sci. 2008 Jun 15;322(2):505-15. doi: 10.1016/j.jcis.2008.03.033. Epub 2008 Mar 21.
6
Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery.
Colloids Surf B Biointerfaces. 2011 Oct 15;87(2):454-63. doi: 10.1016/j.colsurfb.2011.06.009. Epub 2011 Jun 15.
7
Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel.
Eur J Pharm Biopharm. 2015 Jun;93:18-26. doi: 10.1016/j.ejpb.2015.03.022. Epub 2015 Mar 24.
9
Preparation and characterization of letrozole-loaded poly(d,l-lactide) nanoparticles for drug delivery in breast cancer therapy.
Pharm Dev Technol. 2019 Feb;24(2):235-242. doi: 10.1080/10837450.2018.1455698. Epub 2018 Apr 5.
10

引用本文的文献

6
Drug Combinations in Breast Cancer Therapy.
Pharm Nanotechnol. 2019;7(1):3-23. doi: 10.2174/2211738507666190122111224.
7
Antiretroviral Drugs-Loaded Nanoparticles Fabricated by Dispersion Polymerization with Potential for HIV/AIDS Treatment.
Infect Dis (Auckl). 2016 Mar 20;9:21-32. doi: 10.4137/IDRT.S38108. eCollection 2016.
8
Activation of HIV-1 with Nanoparticle-Packaged Small-Molecule Protein Phosphatase-1-Targeting Compound.
Sci Pharm. 2015 Jun 22;83(3):535-48. doi: 10.3797/scipharm.1502-01. Print 2015 Jul-Sep.
9
Computer Optimization of Biodegradable Nanoparticles Fabricated by Dispersion Polymerization.
Int J Environ Res Public Health. 2015 Dec 22;13(1):ijerph13010047. doi: 10.3390/ijerph13010047.
10
Nanotechnology Approaches for the Delivery of Exogenous siRNA for HIV Therapy.
Mol Pharm. 2015 Dec 7;12(12):4175-87. doi: 10.1021/acs.molpharmaceut.5b00335. Epub 2015 Nov 9.

本文引用的文献

1
The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres.
Adv Drug Deliv Rev. 1995 Sep;16(2-3):215-233. doi: 10.1016/0169-409X(95)00026-4.
2
Implementation of mixture design for formulation of albumin containing enteric-coated spray-dried microparticles.
Drug Dev Ind Pharm. 2013 Feb;39(2):164-75. doi: 10.3109/03639045.2012.664148. Epub 2012 May 17.
3
Has nanotechnology led to improved therapeutic outcomes?
Drug Dev Ind Pharm. 2012 Feb;38(2):158-70. doi: 10.3109/03639045.2011.597764.
4
Studies on in vitro availability, degradation, and thermal properties of naltrexone-loaded biodegradable microspheres.
Drug Dev Ind Pharm. 2011 Jun;37(6):673-84. doi: 10.3109/03639045.2010.535540. Epub 2011 Mar 30.
5
Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(ɛ-caprolactone) nanoparticles: In vitro and in vivo evaluation.
Int J Pharm. 2010 Dec 15;402(1-2):238-47. doi: 10.1016/j.ijpharm.2010.10.005. Epub 2010 Oct 8.
6
Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles.
Biomaterials. 2010 May;31(13):3657-66. doi: 10.1016/j.biomaterials.2010.01.065. Epub 2010 Feb 6.
7
Factors affecting the clearance and biodistribution of polymeric nanoparticles.
Mol Pharm. 2008 Jul-Aug;5(4):505-15. doi: 10.1021/mp800051m. Epub 2008 Aug 4.
8
New-concept chemotherapy by nanoparticles of biodegradable polymers: where are we now?
Nanomedicine (Lond). 2006 Oct;1(3):297-309. doi: 10.2217/17435889.1.3.297.
9
The effect of paclitaxel-loaded nanoparticles with radiation on hypoxic MCF-7 cells.
J Clin Pharm Ther. 2007 Feb;32(1):41-7. doi: 10.1111/j.1365-2710.2007.00796.x.
10
Nanotechnology: intelligent design to treat complex disease.
Pharm Res. 2006 Jul;23(7):1417-50. doi: 10.1007/s11095-006-0284-8. Epub 2006 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验