文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Dispersion polymerization induced self-assembly (pisa) techniques for the fabrication of polymeric nanoparticles for biomedical applications.

作者信息

Akala Emmanuel O

机构信息

Department of Pharmaceutical Sciences, Center for Drug Research and Development, College of Pharmacy, Howard University, Washington, DC 20059., USA.

出版信息

Nanotechnol Lett. 2023 Jan;8(1):1-15. Epub 2023 Jan 28.


DOI:
PMID:39081630
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11288079/
Abstract

Nanoparticles offer several advantages in drug delivery. The progress in the development of nanoparticles for biomedical applications has moved from the first generation nanoparticles to the fifth generation nanoparticles and the transitions reflect their increasing versatility in biomedical applications. Polymeric nanoparticles are prepared mainly by two methods: dispersion of preformed polymers and in situ polymerization of monomers and macromonomers. Polymerization induced self-assembly (PISA) for the fabrication of nanoparticles is believed to be a better strategy than nanoparticle fabrication from preformed polymers (ease of tethering targeting ligands to the corona of the nanoparticles and unlike PISA, creation of nanostructures via self-assembly of block copolymers is performed in low concentrations. Dispersion polymerization involves one-pot synthesis of nanoparticles. RDRP processes such as atom transfer radical polymerization, reversible addition-fragmentation chain transfer polymerization and nitroxide mediated polymerization have revolutionized polymer synthesis by providing polymer chemists with powerful tools that enable control over architecture, composition and chain length distributions. The technique for the fabrication of nanoparticles by dispersion polymerization (PISA) at ambient temperature was described with examples from our laboratory involving organic redox initiated polymerization using the FDA approved biodegradable polymers. Computer optimization is useful in understanding the factors that ensure optimized properties of drug-loaded nanoparticles.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/55db886f2a62/nihms-2002330-f0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/bd7655c37fdb/nihms-2002330-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/db1a87d6783c/nihms-2002330-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/9e60d45825cf/nihms-2002330-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/31297be9d1ac/nihms-2002330-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/8d914b05b643/nihms-2002330-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/a38aa03836da/nihms-2002330-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/196a98fd7550/nihms-2002330-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/dff6a330d378/nihms-2002330-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/bc7d016f9d18/nihms-2002330-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/41c8a1fae37f/nihms-2002330-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/34d6993b8cb0/nihms-2002330-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/2c1d45255664/nihms-2002330-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/532380d40b09/nihms-2002330-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/357e90d11007/nihms-2002330-f0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/55db886f2a62/nihms-2002330-f0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/bd7655c37fdb/nihms-2002330-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/db1a87d6783c/nihms-2002330-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/9e60d45825cf/nihms-2002330-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/31297be9d1ac/nihms-2002330-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/8d914b05b643/nihms-2002330-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/a38aa03836da/nihms-2002330-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/196a98fd7550/nihms-2002330-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/dff6a330d378/nihms-2002330-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/bc7d016f9d18/nihms-2002330-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/41c8a1fae37f/nihms-2002330-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/34d6993b8cb0/nihms-2002330-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/2c1d45255664/nihms-2002330-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/532380d40b09/nihms-2002330-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/357e90d11007/nihms-2002330-f0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5132/11288079/55db886f2a62/nihms-2002330-f0016.jpg

相似文献

[1]
Dispersion polymerization induced self-assembly (pisa) techniques for the fabrication of polymeric nanoparticles for biomedical applications.

Nanotechnol Lett. 2023-1

[2]
Modern Trends in Polymerization-Induced Self-Assembly.

Polymers (Basel). 2024-5-15

[3]
Polymerization-Induced Self-Assembly of Functionalized Block Copolymer Nanoparticles and Their Application in Drug Delivery.

Macromol Rapid Commun. 2018-7-2

[4]
Polymerization-Induced Self-Assembly for Efficient Fabrication of Biomedical Nanoplatforms.

Research (Wash D C). 2023-4-11

[5]
Polymerization-induced thermal self-assembly (PITSA).

Chem Sci. 2015-2-1

[6]
Controlling Nanomaterial Size and Shape for Biomedical Applications via Polymerization-Induced Self-Assembly.

Macromol Rapid Commun. 2018-8-9

[7]
Simultaneous Synthesis and Self-Assembly of Bottlebrush Block Copolymers at Room Temperature via Photoinitiated RAFT Dispersion Polymerization.

Macromol Rapid Commun. 2022-4

[8]
New Insights into RAFT Dispersion Polymerization-Induced Self-Assembly: From Monomer Library, Morphological Control, and Stability to Driving Forces.

Macromol Rapid Commun. 2018-7-4

[9]
Expanding the Scope of Polymerization-Induced Self-Assembly: Recent Advances and New Horizons.

Macromol Rapid Commun. 2021-12

[10]
Stimuli-Responsive Pickering Emulsions Regulated via Polymerization-Induced Self-Assembly Nanoparticles.

Macromol Rapid Commun. 2022-6

本文引用的文献

[1]
Visible Light-Mediated Polymerization-Induced Self-Assembly in the Absence of External Catalyst or Initiator.

ACS Macro Lett. 2016-5-17

[2]
Photo-PISA: Shedding Light on Polymerization-Induced Self-Assembly.

ACS Macro Lett. 2015-11-17

[3]
Cellular uptake and cytotoxicity studies of pH-responsive polymeric nanoparticles fabricated by dispersion polymerization.

J Nanosci Nanomed. 2018-9

[4]
Fabrication of Paclitaxel and 17AAG-loaded Poly-ε-Caprolactone Nanoparticles for Breast Cancer Treatment.

J Pharm Drug Deliv Res. 2021-1

[5]
Studies on polyethylene glycol-monoclonal antibody conjugates for fabrication of nanoparticles for biomedical applications.

J Nanosci Nanomed. 2020-7

[6]
Proapoptotic Peptide Brush Polymer Nanoparticles via Photoinitiated Polymerization-Induced Self-Assembly.

Angew Chem Int Ed Engl. 2020-10-19

[7]
Aqueous suspension of amphiphilic diblock copolymer nanoparticles prepared in situ from a water-soluble poly(sodium acrylate) alkoxyamine macroinitiator.

Soft Matter. 2006-2-15

[8]
New Variants of Nitroxide Mediated Polymerization.

Polymers (Basel). 2020-7-2

[9]
Drug-Directed Morphology Changes in Polymerization-Induced Self-Assembly (PISA) Influence the Biological Behavior of Nanoparticles.

ACS Appl Mater Interfaces. 2020-7-8

[10]
Computer Optimization of Stealth Biodegradable Polymeric Dual-loaded Nanoparticles for Cancer Therapy Using Central Composite Face-centered Design.

Pharm Nanotechnol. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索