Akala Emmanuel O
Department of Pharmaceutical Sciences, Center for Drug Research and Development, College of Pharmacy, Howard University, Washington, DC 20059., USA.
Nanotechnol Lett. 2023 Jan;8(1):1-15. Epub 2023 Jan 28.
Nanoparticles offer several advantages in drug delivery. The progress in the development of nanoparticles for biomedical applications has moved from the first generation nanoparticles to the fifth generation nanoparticles and the transitions reflect their increasing versatility in biomedical applications. Polymeric nanoparticles are prepared mainly by two methods: dispersion of preformed polymers and in situ polymerization of monomers and macromonomers. Polymerization induced self-assembly (PISA) for the fabrication of nanoparticles is believed to be a better strategy than nanoparticle fabrication from preformed polymers (ease of tethering targeting ligands to the corona of the nanoparticles and unlike PISA, creation of nanostructures via self-assembly of block copolymers is performed in low concentrations. Dispersion polymerization involves one-pot synthesis of nanoparticles. RDRP processes such as atom transfer radical polymerization, reversible addition-fragmentation chain transfer polymerization and nitroxide mediated polymerization have revolutionized polymer synthesis by providing polymer chemists with powerful tools that enable control over architecture, composition and chain length distributions. The technique for the fabrication of nanoparticles by dispersion polymerization (PISA) at ambient temperature was described with examples from our laboratory involving organic redox initiated polymerization using the FDA approved biodegradable polymers. Computer optimization is useful in understanding the factors that ensure optimized properties of drug-loaded nanoparticles.
纳米颗粒在药物递送方面具有多种优势。用于生物医学应用的纳米颗粒的发展已从第一代纳米颗粒发展到第五代纳米颗粒,这些转变反映了它们在生物医学应用中日益增强的多功能性。聚合物纳米颗粒主要通过两种方法制备:预制聚合物的分散以及单体和大分子单体的原位聚合。用于制备纳米颗粒的聚合诱导自组装(PISA)被认为是一种比由预制聚合物制备纳米颗粒更好的策略(便于将靶向配体连接到纳米颗粒的冠层,并且与PISA不同,通过嵌段共聚物的自组装形成纳米结构是在低浓度下进行的)。分散聚合涉及纳米颗粒的一锅法合成。诸如原子转移自由基聚合、可逆加成-断裂链转移聚合和氮氧自由基介导聚合等可逆加成-断裂链转移聚合(RDRP)过程通过为聚合物化学家提供能够控制聚合物结构、组成和链长分布的强大工具,彻底改变了聚合物合成。通过来自我们实验室的实例描述了在环境温度下通过分散聚合(PISA)制备纳米颗粒的技术,这些实例涉及使用FDA批准的可生物降解聚合物的有机氧化还原引发聚合。计算机优化有助于理解确保载药纳米颗粒具有优化性能的因素。