Department of Chemistry , Stanford University , Stanford , California 94305 , United States.
Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States.
J Am Chem Soc. 2019 Mar 27;141(12):4936-4951. doi: 10.1021/jacs.9b00118. Epub 2019 Mar 14.
Synthetic peroxo-bridged high-spin (HS) heme-(μ-η:η-O)-Cu(L) complexes incorporating (as part of the copper ligand) intramolecular hydrogen-bond (H-bond) capabilities and/or steric effects are herein demonstrated to affect the complex's electronic and geometric structure, notably impacting the spin state. An H-bonding interaction with the peroxo core favors a low-spin (LS) heme-(μ-η:η-O)-Cu(L) structure, resulting in a reversible temperature-dependent interconversion of spin state (5 coordinate HS to 6 coordinate LS). The LS state dominates at low temperatures, even in the absence of a strong trans-axial heme ligand. Lewis base addition inhibits the H-bond facilitated spin interconversion by competition for the H-bond donor, illustrating the precise H-bonding interaction required to induce spin-crossover (SCO). Resonance Raman spectroscopy (rR) shows that the H-bonding pendant interacts with the bridging peroxide ligand to stabilize the LS but not the HS state. The H-bond (to the Cu-bound O atom) acts to weaken the O-O bond and strengthen the Fe-O bond, exhibiting ν(M-O) and ν(O-O) values comparable to analogous known LS complexes with a strong donating trans-axial ligand, 1,5-dicyclohexylimidazole, (DCHIm)heme-(μ-η:η-O)-Cu(L). Variable-temperature (-90 to -130 °C) UV-vis and H NMR spectroscopies confirm the SCO process and implicate the involvement of solvent binding. Examining a case of solvent binding without SCO, thermodynamic parameters were obtained from a van't Hoff analysis, accounting for its contribution in SCO. Taken together, these data provide evidence for the H-bond group facilitating a core geometry change and allowing solvent to bind, stabilizing a LS state. The rR data, complemented by DFT analysis, reveal a stronger H-bonding interaction with the peroxo core in the LS compared to the HS complexes, which enthalpically favors the LS state. These insights enhance our fundamental understanding of secondary coordination sphere influences in metalloenzymes.
本文展示了合成的过氧桥联高自旋 (HS) 血红素-(μ-η:η-O)-Cu(L) 配合物,其中包含(作为铜配体的一部分)分子内氢键 (H-bond) 能力和/或空间位阻效应,这些因素会影响配合物的电子和几何结构,特别是影响自旋状态。过氧核与氢键的相互作用有利于低自旋 (LS) 血红素-(μ-η:η-O)-Cu(L) 结构,导致自旋状态的可逆温度依赖性互变(5 配位 HS 至 6 配位 LS)。LS 状态在低温下占主导地位,即使没有强的反轴向血红素配体也是如此。路易斯碱的添加通过与氢键供体竞争来抑制氢键促进的自旋互变,这说明了诱导自旋交叉 (SCO) 所需的确切氢键相互作用。共振拉曼光谱 (rR) 表明,氢键悬挂部分与桥接过氧化物配体相互作用,稳定 LS 但不稳定 HS 状态。氢键(与 Cu 结合的 O 原子)作用是削弱 O-O 键并加强 Fe-O 键,表现出 ν(M-O) 和 ν(O-O) 值与具有强供电子反轴向配体 1,5-二环己基咪唑的类似已知 LS 配合物相当 (DCHIm)heme-(μ-η:η-O)-Cu(L)。-90 至-130°C 的可变温度 (UV-vis 和 H NMR) 光谱证实了 SCO 过程,并暗示了溶剂结合的参与。在没有 SCO 的情况下考察溶剂结合的情况,从范特霍夫分析中获得热力学参数,考虑其在 SCO 中的贡献。综上所述,这些数据为氢键基团促进核心几何结构变化并允许溶剂结合,稳定 LS 状态提供了证据。rR 数据与 DFT 分析相结合,表明 LS 配合物中过氧核的氢键相互作用比 HS 配合物更强,这从焓的角度有利于 LS 状态。这些见解增强了我们对金属酶中次级配位球影响的基本理解。