Stowers Institute for Medical Research, , 1000 East 50th Street, Kansas City, MO 64110, USA.
Philos Trans R Soc Lond B Biol Sci. 2013 Sep 23;368(1629):20130002. doi: 10.1098/rstb.2013.0002. Print 2013.
Mammalian oocyte meiosis encompasses two rounds of asymmetric divisions to generate a totipotent haploid egg and, as by-products, two small polar bodies. Two intracellular events, asymmetric spindle positioning and cortical polarization, are critical to such asymmetric divisions. Actin but not microtubule cytoskeleton has been known to be directly involved in both events. Recent work has revealed a positive feedback loop between chromosome-mediated cortical activation and the Arp2/3-orchestrated cytoplasmic streaming that moves chromosomes. This feedback loop not only maintains meiotic II spindle position during metaphase II arrest, but also brings about symmetry breaking during meiosis I. Prior to an Arp2/3-dependent phase of fast movement, meiotic I spindle experiences a slow and non-directional first phase of migration driven by a pushing force from Fmn2-mediated actin polymerization. In addition to illustrating these molecular mechanisms, mathematical simulations are presented to elucidate mechanical properties of actin-dependent force generation in this system.
哺乳动物卵母细胞减数分裂包括两轮不对称分裂,以产生全能的单倍体卵子,并作为副产品产生两个小的极体。两个细胞内事件,不对称纺锤体定位和皮质极化,对这种不对称分裂至关重要。已知肌动蛋白而非微管细胞骨架直接参与这两个事件。最近的工作揭示了染色体介导的皮质激活与 Arp2/3 协调的细胞质流动之间的正反馈环,该细胞质流动带动染色体。这个反馈环不仅在中期 II 阻滞期间维持减数分裂 II 纺锤体的位置,而且在减数分裂 I 期间打破对称性。在依赖 Arp2/3 的快速运动阶段之前,减数分裂 I 纺锤体经历一个缓慢且无方向的第一阶段迁移,由 Fmn2 介导的肌动蛋白聚合产生的推力驱动。除了说明这些分子机制外,还进行了数学模拟,以阐明该系统中肌动蛋白依赖性力产生的力学特性。