Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.
Biotechnology Center, TU Dresden, Dresden, Germany.
Nature. 2022 Sep;609(7927):597-604. doi: 10.1038/s41586-022-05084-3. Epub 2022 Aug 17.
A key event at the onset of development is the activation of a contractile actomyosin cortex during the oocyte-to-embryo transition. Here we report on the discovery that, in Caenorhabditis elegans oocytes, actomyosin cortex activation is supported by the emergence of thousands of short-lived protein condensates rich in F-actin, N-WASP and the ARP2/3 complex that form an active micro-emulsion. A phase portrait analysis of the dynamics of individual cortical condensates reveals that condensates initially grow and then transition to disassembly before dissolving completely. We find that, in contrast to condensate growth through diffusion, the growth dynamics of cortical condensates are chemically driven. Notably, the associated chemical reactions obey mass action kinetics that govern both composition and size. We suggest that the resultant condensate dynamic instability suppresses coarsening of the active micro-emulsion, ensures reaction kinetics that are independent of condensate size and prevents runaway F-actin nucleation during the formation of the first cortical actin meshwork.
在胚胎发生的起始阶段,一个关键事件是在卵母细胞到胚胎的转变过程中激活收缩性的肌动球蛋白皮质。在这里,我们报告了一个发现,即在秀丽隐杆线虫卵母细胞中,肌动球蛋白皮质的激活是由数千个富含 F-肌动蛋白、N-WASP 和 ARP2/3 复合物的短暂蛋白凝聚体的出现支持的,这些凝聚体形成了一个活跃的微乳液。对单个皮质凝聚体动力学的相图分析表明,凝聚体最初生长,然后在完全溶解之前过渡到解体。我们发现,与通过扩散的凝聚体生长相反,皮质凝聚体的生长动力学是化学驱动的。值得注意的是,相关的化学反应遵循质量作用动力学,该动力学既控制组成又控制大小。我们认为,由此产生的凝聚体动态不稳定性抑制了活性微乳液的粗化,确保了与凝聚体大小无关的反应动力学,并防止了在第一个皮质肌动蛋白网格形成过程中发生失控的 F-肌动蛋白成核。