Suppr超能文献

成人心律失常的发育基础:以心房颤动为例

The developmental basis of adult arrhythmia: atrial fibrillation as a paradigm.

作者信息

Kapur Sunil, Macrae Calum A

机构信息

Medicine, Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School Boston, MA, USA.

出版信息

Front Physiol. 2013 Sep 12;4:221. doi: 10.3389/fphys.2013.00221.

Abstract

Normal cardiac rhythm is one of the most fundamental physiologic phenomena, emerging early in the establishment of the vertebrate body plan. The developmental pathways underlying the patterning and maintenance of stable cardiac electrophysiology must be extremely robust, but are only now beginning to be unraveled. The step-wise emergence of automaticity, AV delay and sequential conduction are each tightly regulated and perturbations of these patterning events is now known to play an integral role in pediatric and adult cardiac arrhythmias. Electrophysiologic patterning within individual cardiac chambers is subject to exquisite control and is influenced by early physiology superimposed on the underlying gene networks that regulate cardiogenesis. As additional cell populations migrate to the developing heart these too bring further complexity to the organ, as it adapts to the dynamic requirements of a growing organism. A comprehensive understanding of the developmental basis of normal rhythm will inform not only the mechanisms of inherited arrhythmias, but also the differential regional propensities of the adult heart to acquired arrhythmias. In this review we use atrial fibrillation as a generalizable example where the various factors are perhaps best understood.

摘要

正常心脏节律是最基本的生理现象之一,在脊椎动物身体结构建立的早期就已出现。稳定心脏电生理学的模式形成和维持所依据的发育途径必定极为稳健,但直到现在才开始被揭示。自律性、房室延迟和顺序传导的逐步出现均受到严格调控,现在已知这些模式形成事件的扰动在儿童和成人心律失常中起着不可或缺的作用。各个心腔内的电生理模式受到精确控制,并受到叠加在调节心脏发生的基础基因网络上的早期生理学的影响。随着更多细胞群体迁移至发育中的心脏,这也给该器官带来了更多复杂性,因为它要适应不断生长的生物体的动态需求。对正常节律发育基础的全面理解不仅将为遗传性心律失常的机制提供信息,还将为成人心脏发生获得性心律失常的不同区域倾向提供信息。在本综述中,我们以心房颤动作为一个可推广的例子,其中各种因素可能最易于理解。

相似文献

1
The developmental basis of adult arrhythmia: atrial fibrillation as a paradigm.
Front Physiol. 2013 Sep 12;4:221. doi: 10.3389/fphys.2013.00221.
2
Atrial electrophysiology and mechanisms of atrial fibrillation.
J Cardiovasc Pharmacol Ther. 2003 Jun;8 Suppl 1:S5-11. doi: 10.1177/107424840300800102.
3
The electrical heart: 25 years of discovery in cardiac electrophysiology, arrhythmias and sudden death.
Cardiovasc Pathol. 2016 Mar-Apr;25(2):149-57. doi: 10.1016/j.carpath.2015.11.005. Epub 2015 Dec 2.
4
MicroRNA regulation of cardiac conduction and arrhythmias.
Transl Res. 2013 May;161(5):381-92. doi: 10.1016/j.trsl.2012.12.004. Epub 2012 Dec 27.
5
Vernakalant: RSD 1235, RSD-1235, RSD1235.
Drugs R D. 2007;8(4):259-65. doi: 10.2165/00126839-200708040-00007.
7
Electrophysiologic findings after Fontan repair of functional single ventricle.
J Am Coll Cardiol. 1991 Jan;17(1):174-81. doi: 10.1016/0735-1097(91)90723-m.
8
Advanced electrophysiologic mapping systems: an evidence-based analysis.
Ont Health Technol Assess Ser. 2006;6(8):1-101. Epub 2006 Mar 1.
9
Electrophysiology and indications for pacing in the '80's.
Pacing Clin Electrophysiol. 1982 Jul;5(4):548-60. doi: 10.1111/j.1540-8159.1982.tb02277.x.
10
Cellular electrophysiologic basis of cardiac arrhythmias.
Am J Cardiol. 1996 Aug 29;78(4A):4-11. doi: 10.1016/s0002-9149(96)00447-x.

引用本文的文献

1
Identification and Functional Investigation of as a Novel Gene Underpinning Familial Atrial Fibrillation.
Diagnostics (Basel). 2024 Oct 25;14(21):2376. doi: 10.3390/diagnostics14212376.
2
Role of Genetic Variation in Transcriptional Regulatory Elements in Heart Rhythm.
Cells. 2023 Dec 19;13(1):4. doi: 10.3390/cells13010004.
4
Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation.
Circ Res. 2020 Jun 19;127(1):34-50. doi: 10.1161/CIRCRESAHA.120.316574. Epub 2020 Jun 18.
5
Long non-coding RNA expression profile in atrial fibrillation.
Int J Clin Exp Pathol. 2015 Jul 1;8(7):8402-10. eCollection 2015.
6
Atrial fibrillation and microRNAs.
Front Physiol. 2014 Jan 24;5:15. doi: 10.3389/fphys.2014.00015. eCollection 2014.
7
Sudden arrhythmic death: from basic science to clinical practice.
Front Physiol. 2013 Nov 25;4:339. doi: 10.3389/fphys.2013.00339. eCollection 2013.

本文引用的文献

2
Genome-wide association studies of atrial fibrillation: past, present, and future.
Cardiovasc Res. 2011 Mar 1;89(4):701-9. doi: 10.1093/cvr/cvr001. Epub 2011 Jan 18.
3
Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation.
Nat Med. 2010 Apr;16(4):470-4. doi: 10.1038/nm.2124. Epub 2010 Mar 21.
4
Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling.
Hypertension. 2010 Apr;55(4):939-45. doi: 10.1161/HYPERTENSIONAHA.109.141127. Epub 2010 Feb 22.
5
Melanocyte-like cells in the heart and pulmonary veins contribute to atrial arrhythmia triggers.
J Clin Invest. 2009 Nov;119(11):3420-36. doi: 10.1172/JCI39109. Epub 2009 Oct 12.
6
Developmental and genetic aspects of atrial fibrillation.
Trends Cardiovasc Med. 2009 May;19(4):123-30. doi: 10.1016/j.tcm.2009.07.003.
7
A caudal proliferating growth center contributes to both poles of the forming heart tube.
Circ Res. 2009 Jan 30;104(2):179-88. doi: 10.1161/CIRCRESAHA.108.185843. Epub 2008 Dec 4.
8
Identification and distribution of interstitial Cajal cells in human pulmonary veins.
Heart Rhythm. 2008 Jul;5(7):1063-7. doi: 10.1016/j.hrthm.2008.03.057. Epub 2008 Apr 1.
9
Genetics of atrial fibrillation.
Med Clin North Am. 2008 Jan;92(1):41-51, x. doi: 10.1016/j.mcna.2007.09.005.
10
Role of inflammation in initiation and perpetuation of atrial fibrillation: a systematic review of the published data.
J Am Coll Cardiol. 2007 Nov 20;50(21):2021-8. doi: 10.1016/j.jacc.2007.06.054. Epub 2007 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验