Department of Neurology, Hannover Medical School, Hannover, Germany ; Center for Systems Neuroscience, Hannover, Germany.
PLoS One. 2013 Sep 12;8(9):e72926. doi: 10.1371/journal.pone.0072926. eCollection 2013.
Administration of mesenchymal stromal cells (MSC) improves functional outcome in the SOD1G93A mouse model of the degenerative motor neuron disorder amyotrophic lateral sclerosis (ALS) as well as in models of other neurological disorders. We have now investigated the effect of the interaction between MSC and motor neurons (derived from both non-transgenic and mutant SOD1G93A transgenic mice), NSC-34 cells and glial cells (astrocytes, microglia) (derived again from both non-transgenic and mutant SOD1G93A ALS transgenic mice) in vitro. In primary motor neurons, NSC-34 cells and astrocytes, MSC conditioned medium (MSC CM) attenuated staurosporine (STS) - induced apoptosis in a concentration-dependent manner. Studying MSC CM-induced expression of neurotrophic factors in astrocytes and NSC-34 cells, we found that glial cell line-derived neurotrophic factor (GDNF) and ciliary neurotrophic factor (CNTF) gene expression in astrocytes were significantly enhanced by MSC CM, with differential responses of non-transgenic and mutant astrocytes. Expression of Vascular Endothelial Growth Factor (VEGF) in NSC-34 cells was significantly upregulated upon MSC CM-treatment. MSC CM significantly reduced the expression of the cytokines TNFα and IL-6 and iNOS both in transgenic and non-transgenic astrocytes. Gene expression of the neuroprotective chemokine Fractalkine (CX3CL1) was also upregulated in mutant SOD1G93A transgenic astrocytes by MSC CM treatment. Correspondingly, MSC CM increased the respective receptor, CX3CR1, in mutant SOD1G93A transgenic microglia. Our data demonstrate that MSC modulate motor neuronal and glial response to apoptosis and inflammation. MSC therefore represent an interesting candidate for further preclinical and clinical evaluation in ALS.
间质基质细胞(MSC)的给药改善了退行性运动神经元疾病肌萎缩侧索硬化症(ALS)的 SOD1G93A 小鼠模型以及其他神经障碍模型中的功能结果。我们现在已经研究了 MSC 与运动神经元(源自非转基因和突变 SOD1G93A 转基因小鼠)、NSC-34 细胞和神经胶质细胞(星形胶质细胞、小胶质细胞)(再次源自非转基因和突变 SOD1G93A ALS 转基因小鼠)之间的相互作用对体外的影响。在原代运动神经元、NSC-34 细胞和星形胶质细胞中,MSC 条件培养基(MSC CM)以浓度依赖性方式减弱了星形孢菌素(STS)诱导的细胞凋亡。研究 MSC CM 诱导星形胶质细胞和 NSC-34 细胞中神经营养因子表达时,我们发现 MSC CM 显著增强了星形胶质细胞中的胶质细胞系源性神经营养因子(GDNF)和睫状神经营养因子(CNTF)基因表达,而非转基因和突变星形胶质细胞的反应不同。MSC CM 处理后,NSC-34 细胞中血管内皮生长因子(VEGF)的表达显著上调。MSC CM 显著降低了转基因和非转基因星形胶质细胞中细胞因子 TNFα和 IL-6 以及 iNOS 的表达。MSC CM 处理也上调了突变 SOD1G93A 转基因星形胶质细胞中神经保护趋化因子 fractalkine(CX3CL1)的基因表达。相应地,MSC CM 增加了突变 SOD1G93A 转基因小胶质细胞中相应的受体 CX3CR1。我们的数据表明,MSC 调节运动神经元和神经胶质对细胞凋亡和炎症的反应。因此,MSC 代表了在 ALS 中进一步进行临床前和临床评估的一个有趣的候选者。