Ciervo Yuri, Gatto Noemi, Allen Chloe, Grierson Andrew, Ferraiuolo Laura, Mead Richard J, Shaw Pamela J
Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK.
Mol Ther Methods Clin Dev. 2021 Mar 27;21:413-433. doi: 10.1016/j.omtm.2021.03.017. eCollection 2021 Jun 11.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative condition for which new therapeutic options are urgently needed. We injected GFP adipose-derived stem cells (EGFP-ADSCs) directly into the cerebrospinal fluid (CSF) of transgenic SOD1 mice, a well-characterized model of familial ALS. Despite short-term survival of the injected cells and limited engraftment efficiency, EGFP-ADSCs improved motor function and delayed disease onset by promoting motor neuron (MN) survival and reducing glial activation. We then tested the neuroprotective potential of mouse ADSCs in astrocyte/MN co-cultures where ALS astrocytes show neurotoxicity. ADSCs were able to rescue MN death caused by ALS astrocytes derived from symptomatic SOD1 mice. Further, ADSCs were found to reduce the inflammatory signature of ALS astrocytes by inhibiting the release of pro-inflammatory mediators and inducing the secretion of neuroprotective factors. Finally, mouse ADSCs were able to protect MNs from the neurotoxicity mediated by human induced astrocytes (iAstrocytes) derived from patients with either sporadic or familial ALS, thus for the first time showing the potential therapeutic translation of ADSCs across the spectrum of human ALS. These data in two translational models of ALS show that, through paracrine mechanisms, ADSCs support MN survival and modulate the toxic microenvironment that contributes to neurodegeneration in ALS.
肌萎缩侧索硬化症(ALS)是一种极具破坏性的神经退行性疾病,迫切需要新的治疗方法。我们将绿色荧光蛋白标记的脂肪来源干细胞(EGFP-ADSCs)直接注射到转基因SOD1小鼠的脑脊液(CSF)中,该小鼠是一种特征明确的家族性ALS模型。尽管注射的细胞短期存活且植入效率有限,但EGFP-ADSCs通过促进运动神经元(MN)存活和减少胶质细胞激活,改善了运动功能并延迟了疾病发作。然后,我们在星形胶质细胞/MN共培养物中测试了小鼠ADSCs的神经保护潜力,在这种共培养物中,ALS星形胶质细胞表现出神经毒性。ADSCs能够挽救由有症状的SOD1小鼠来源的ALS星形胶质细胞引起的MN死亡。此外,发现ADSCs通过抑制促炎介质的释放和诱导神经保护因子的分泌来降低ALS星形胶质细胞的炎症特征。最后,小鼠ADSCs能够保护MN免受散发性或家族性ALS患者来源的人诱导星形胶质细胞(iAstrocytes)介导的神经毒性,从而首次展示了ADSCs在人类ALS全谱系中的潜在治疗转化。ALS两个转化模型中的这些数据表明,通过旁分泌机制,ADSCs支持MN存活并调节导致ALS神经退行性变的毒性微环境。