Department of Earth and Environmental Science, University of St Andrews, St Andrews, United Kingdom.
PLoS One. 2013 Sep 19;8(9):e74170. doi: 10.1371/journal.pone.0074170. eCollection 2013.
Carbon emissions resulting from deforestation and forest degradation are poorly known at local, national and global scales. In part, this lack of knowledge results from uncertain above-ground biomass estimates. It is generally assumed that using more sophisticated methods of estimating above-ground biomass, which make use of remote sensing, will improve accuracy. We examine this assumption by calculating, and then comparing, above-ground biomass area density (AGBD) estimates from studies with differing levels of methodological sophistication. We consider estimates based on information from nine different studies at the scale of Africa, Mozambique and a 1160 km(2) study area within Mozambique. The true AGBD is not known for these scales and so accuracy cannot be determined. Instead we consider the overall precision of estimates by grouping different studies. Since an the accuracy of an estimate cannot exceed its precision, this approach provides an upper limit on the overall accuracy of the group. This reveals poor precision at all scales, even between studies that are based on conceptually similar approaches. Mean AGBD estimates for Africa vary from 19.9 to 44.3 Mg ha(-1), for Mozambique from 12.7 to 68.3 Mg ha(-1), and for the 1160 km(2) study area estimates range from 35.6 to 102.4 Mg ha(-1). The original uncertainty estimates for each study, when available, are generally small in comparison with the differences between mean biomass estimates of different studies. We find that increasing methodological sophistication does not appear to result in improved precision of AGBD estimates, and moreover, inadequate estimates of uncertainty obscure any improvements in accuracy. Therefore, despite the clear advantages of remote sensing, there is a need to improve remotely sensed AGBD estimates if they are to provide accurate information on above-ground biomass. In particular, more robust and comprehensive uncertainty estimates are needed.
森林砍伐和退化所导致的碳排放,在地方、国家和全球各级都知之甚少。在某种程度上,这种知识的缺乏是由于对地上生物量估计的不确定性造成的。人们普遍认为,使用更复杂的估算地上生物量的方法,利用遥感,将提高精度。我们通过计算,然后比较,具有不同方法复杂度的研究中的地上生物量面积密度(AGBD)的估计,来检验这个假设。我们考虑了基于非洲、莫桑比克以及莫桑比克 1160 平方公里研究区域内的九个不同研究信息的估算值。这些规模的真实 AGBD 是未知的,因此无法确定准确性。相反,我们通过分组不同的研究来考虑估计的总体精度。由于估计的准确性不能超过其精度,因此这种方法提供了组的整体准确性的上限。这表明在所有规模上,即使是基于概念上相似方法的研究,精度也很差。非洲的平均 AGBD 估计值从 19.9 到 44.3 Mg ha(-1)不等,莫桑比克从 12.7 到 68.3 Mg ha(-1)不等,而 1160 平方公里研究区域的估计值范围从 35.6 到 102.4 Mg ha(-1)不等。当有可用的原始不确定性估计时,每个研究的原始不确定性估计通常与不同研究的平均生物量估计值之间的差异相比很小。我们发现,方法学的复杂性的提高似乎并没有提高 AGBD 估计的精度,而且,不确定性的估计不足掩盖了准确性的任何提高。因此,尽管遥感具有明显的优势,但如果遥感要提供有关地上生物量的准确信息,则需要改进遥感 AGBD 估计。特别是,需要更稳健和全面的不确定性估计。