Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin, China ; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin, China.
PLoS One. 2013 Sep 19;8(9):e74390. doi: 10.1371/journal.pone.0074390. eCollection 2013.
Emerging evidence shows that anti-inflammatory strategies targeting inflammatory monocyte subset could reduce excessive inflammation and improve cardiovascular outcomes. Functional expression of voltage-gated sodium channels (VGSCs) have been demonstrated in monocytes and macrophages. We hypothesized that mononuclear phagocyte VGSCs are a target for monocyte/macrophage phenotypic switch, and liposome mediated inhibition of mononuclear phagocyte VGSC may attenuate myocardial ischemia/reperfusion (I/R) injury and improve post-infarction left ventricular remodeling.
METHODOLOGY/PRINCIPAL FINDINGS: Thin film dispersion method was used to prepare phenytoin (PHT, a non-selective VGSC inhibitor) entrapped liposomes. Pharmacokinetic study revealed that the distribution and elimination half-life of PHT entrapped liposomes were shorter than those of free PHT, indicating a rapid uptake by mononuclear phagocytes after intravenous injection. In rat peritoneal macrophages, several VGSC α subunits (NaV1.1, NaV1.3, NaV1.4, NaV1.5, NaV1.6, NaV1.7, NaVX, Scn1b, Scn3b and Scn4b) and β subunits were expressed at mRNA level, and PHT could suppress lipopolysaccharide induced M1 polarization (decreased TNF-α and CCL5 expression) and facilitate interleukin-4 induced M2 polarization (increased Arg1 and TGF-β1 expression). In vivo study using rat model of myocardial I/R injury, demonstrated that PHT entrapped liposome could partially suppress I/R injury induced CD43+ inflammatory monocyte expansion, along with decreased infarct size and left ventricular fibrosis. Transthoracic echocardiography and invasive hemodynamic analysis revealed that PHT entrapped liposome treatment could attenuate left ventricular structural and functional remodeling, as shown by increased ejection fraction, reduced end-systolic and end-diastolic volume, as well as an amelioration of left ventricular systolic (+dP/dt max) and diastolic (-dP/dt min) functions.
CONCLUSIONS/SIGNIFICANCE: Our work for the first time demonstrates the therapeutic potential of VGSC antagonism via liposome mediated monocyte/macrophage targeting in acute phase after myocardial I/R injury. These results suggest that VGSCs in mononuclear phagocyte system might be a novel target for immunomodulation and treatment of myocardial I/R injury.
新出现的证据表明,针对炎症性单核细胞亚群的抗炎策略可以减少过度炎症并改善心血管结局。电压门控钠离子通道(VGSCs)的功能表达已在单核细胞和巨噬细胞中得到证实。我们假设单核吞噬细胞 VGSCs 是单核细胞/巨噬细胞表型转换的靶点,并且通过脂质体介导的单核吞噬细胞 VGSC 抑制可能减轻心肌缺血/再灌注(I / R)损伤并改善梗死后左心室重构。
方法/主要发现:采用薄膜分散法制备苯妥英(PHT,一种非选择性 VGSC 抑制剂)包封的脂质体。药代动力学研究表明,PHT 包封脂质体的分布和消除半衰期短于游离 PHT,表明静脉注射后单核吞噬细胞迅速摄取。在大鼠腹腔巨噬细胞中,几种 VGSCα亚基(NaV1.1、NaV1.3、NaV1.4、NaV1.5、NaV1.6、NaV1.7、NaVX、Scn1b、Scn3b 和 Scn4b)和β亚基在 mRNA 水平表达,PHT 可以抑制脂多糖诱导的 M1 极化(减少 TNF-α和 CCL5 的表达)并促进白细胞介素-4 诱导的 M2 极化(增加 Arg1 和 TGF-β1 的表达)。在心肌 I / R 损伤的大鼠模型中进行的体内研究表明,PHT 包封脂质体可部分抑制 I / R 损伤诱导的 CD43+炎症性单核细胞扩增,并减少梗死面积和左心室纤维化。经胸超声心动图和侵入性血流动力学分析表明,PHT 包封脂质体治疗可减轻左心室结构和功能重构,表现为射血分数增加,收缩末期和舒张末期容积减少,以及左心室收缩功能(+ dP / dt max)和舒张功能(-dP / dt min)的改善。
结论/意义:我们的工作首次证明了通过脂质体介导的单核细胞/巨噬细胞靶向在心肌 I / R 损伤后的急性期对抗 VGSC 可能具有治疗潜力。这些结果表明单核吞噬细胞系统中的 VGSCs 可能是免疫调节和治疗心肌 I / R 损伤的新靶点。